Realistic Data Enrichment for Robust Image Segmentation in
Histopathology
- URL: http://arxiv.org/abs/2304.09534v2
- Date: Mon, 7 Aug 2023 13:00:47 GMT
- Title: Realistic Data Enrichment for Robust Image Segmentation in
Histopathology
- Authors: Sarah Cechnicka, James Ball, Hadrien Reynaud, Callum Arthurs, Candice
Roufosse, and Bernhard Kainz
- Abstract summary: We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
- Score: 2.248423960136122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Poor performance of quantitative analysis in histopathological Whole Slide
Images (WSI) has been a significant obstacle in clinical practice. Annotating
large-scale WSIs manually is a demanding and time-consuming task, unlikely to
yield the expected results when used for fully supervised learning systems.
Rarely observed disease patterns and large differences in object scales are
difficult to model through conventional patient intake. Prior methods either
fall back to direct disease classification, which only requires learning a few
factors per image, or report on average image segmentation performance, which
is highly biased towards majority observations. Geometric image augmentation is
commonly used to improve robustness for average case predictions and to enrich
limited datasets. So far no method provided sampling of a realistic posterior
distribution to improve stability, e.g. for the segmentation of imbalanced
objects within images. Therefore, we propose a new approach, based on diffusion
models, which can enrich an imbalanced dataset with plausible examples from
underrepresented groups by conditioning on segmentation maps. Our method can
simply expand limited clinical datasets making them suitable to train machine
learning pipelines, and provides an interpretable and human-controllable way of
generating histopathology images that are indistinguishable from real ones to
human experts. We validate our findings on two datasets, one from the public
domain and one from a Kidney Transplant study.
Related papers
- Few-Shot Airway-Tree Modeling using Data-Driven Sparse Priors [0.0]
Few-shot learning approaches are cost-effective to transfer pre-trained models using only limited annotated data.
We train a data-driven sparsification module to enhance airways efficiently in lung CT scans.
We then incorporate these sparse representations in a standard supervised segmentation pipeline as a pretraining step to enhance the performance of the DL models.
arXiv Detail & Related papers (2024-07-05T13:46:11Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Unsupervised Anomaly Segmentation using Image-Semantic Cycle Translation [31.396372591714695]
Unsupervised anomaly segmentation (UAS) is a promising field in the medical imaging community.
In this paper, we introduce the semantic space of healthy anatomy in the process of modeling healthy-data distribution.
Experimental results on the BraTS and ISLES databases show that the proposed approach achieves significantly superior performance.
arXiv Detail & Related papers (2021-03-16T14:15:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.