Neural network-based coronary dominance classification of RCA angiograms
- URL: http://arxiv.org/abs/2309.06958v1
- Date: Wed, 13 Sep 2023 13:47:52 GMT
- Title: Neural network-based coronary dominance classification of RCA angiograms
- Authors: Ivan Kruzhilov, Egor Ikryannikov, Artem Shadrin, Ruslan Utegenov,
Galina Zubkova, Ivan Bessonov
- Abstract summary: We propose an algorithm to classify cardiac dominance based on right coronary artery (RCA) angiograms.
Our data set consisted of 828 angiographic studies, 192 of them being patients with left dominance.
The use of machine learning approaches to classify cardiac dominance based on RCA alone has been shown to be successful with satisfactory accuracy.
- Score: 0.3177496877224142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background. Cardiac dominance classification is essential for SYNTAX score
estimation, which is a tool used to determine the complexity of coronary artery
disease and guide patient selection toward optimal revascularization strategy.
Objectives. Cardiac dominance classification algorithm based on the analysis of
right coronary artery (RCA) angiograms using neural network Method. We employed
convolutional neural network ConvNext and Swin transformer for 2D image
(frames) classification, along with a majority vote for cardio angiographic
view classification. An auxiliary network was also used to detect irrelevant
images which were then excluded from the data set. Our data set consisted of
828 angiographic studies, 192 of them being patients with left dominance.
Results. 5-fold cross validation gave the following dominance classification
metrics (p=95%): macro recall=93.1%, accuracy=93.5%, macro F1=89.2%. The most
common case in which the model regularly failed was RCA occlusion, as it
requires utilization of LCA information. Another cause for false prediction is
a small diameter combined with poor quality cardio angiographic view. In such
cases, cardiac dominance classification can be complex and may require
discussion among specialists to reach an accurate conclusion. Conclusion. The
use of machine learning approaches to classify cardiac dominance based on RCA
alone has been shown to be successful with satisfactory accuracy. However, for
higher accuracy, it is necessary to utilize LCA information in the case of an
occluded RCA and detect cases where there is high uncertainty.
Related papers
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - An Improved Heart Disease Prediction Using Stacked Ensemble Method [0.9187159782788579]
We constructed an ML-based diagnostic system for heart illness forecasting, using a heart disorder dataset.
Our method can easily differentiate between people who have cardiac disease and those who are normal.
arXiv Detail & Related papers (2023-04-12T17:53:59Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Encoder-Decoder Architectures for Clinically Relevant Coronary Artery
Segmentation [0.0]
Coronary X-ray angiography is a crucial clinical procedure for the diagnosis and treatment of coronary artery disease.
Previous approaches have used non-optimal segmentation criteria, leading to less useful results.
We propose a line of efficient and high-performance segmentation models using a new decoder architecture, the EfficientUNet++.
arXiv Detail & Related papers (2021-06-21T23:32:11Z) - CathAI: Fully Automated Interpretation of Coronary Angiograms Using
Neural Networks [9.963333753481514]
We show for the first time that fully-automated angiogram interpretation to estimate coronary artery stenosis is possible using a sequence of deep neural network algorithms.
The algorithmic pipeline we developed--called CathAI--achieves state-of-the art performance across the sequence of tasks required to accomplish automated interpretation of unselected, real-world angiograms.
arXiv Detail & Related papers (2021-06-14T18:58:09Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
A convolutional neural network (CNN) based method is proposed to fulfill a diabetic retinopathy (DR) classification framework.
A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification.
Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale.
arXiv Detail & Related papers (2020-06-09T19:44:10Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in
MPR Images [0.0]
We develop an automated model to identify stenosis severity in MPR images.
The model predicts one of three classes: 'no stenosis' for normal, 'non-significant' - 1-50% of stenosis detected,'significant' - more than 50% of stenosis.
For stenosis score classification, the method shows improved performance comparing to previous works, achieving 80% accuracy on the patient level.
arXiv Detail & Related papers (2020-01-23T15:20:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.