KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation
- URL: http://arxiv.org/abs/2410.21160v1
- Date: Mon, 28 Oct 2024 16:00:42 GMT
- Title: KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation
- Authors: Zhihao Zhao, Shahrooz Faghihroohi, Yinzheng Zhao, Junjie Yang, Shipeng Zhong, Kai Huang, Nassir Navab, Boyang Li, M. Ali Nasseri,
- Abstract summary: We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
- Score: 46.57880203321858
- License:
- Abstract: Background and Objective: In the realm of ophthalmic imaging, accurate vascular segmentation is paramount for diagnosing and managing various eye diseases. Contemporary deep learning-based vascular segmentation models rival human accuracy but still face substantial challenges in accurately segmenting minuscule blood vessels in neural network applications. Due to the necessity of multiple downsampling operations in the CNN models, fine details from high-resolution images are inevitably lost. The objective of this study is to design a structure to capture the delicate and small blood vessels. Methods: To address these issues, we propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module, integrated within a UNet++ framework. Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules. The LD module is designed to adaptively adjust the focus on thin vessels that might be overlooked in standard convolution. The CA module improves the global understanding of vascular structures by aggregating the detailed features from the LD module with the high level features from the UNet++ architecture. Finally, we adopt a topological loss function based on persistent homology to constrain the topological continuity of the segmentation. Results: The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset, achieving an average accuracy (ACC) of 97.25%, 97.77%, 97.85%, 98.89%, and 98.21%, respectively. Conclusions: Empirical evidence shows that our method outperforms the current best models on different vessel segmentation datasets. Our source code is available at: https://github.com/AIEyeSystem/KalDeX.
Related papers
- KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-09-19T14:21:38Z) - OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
We propose OCTAMamba, a novel U-shaped network based on the Mamba architecture to segment vasculature in OCTA accurately.
OCTAMamba integrates a Quad Stream Efficient Mining Embedding Module for local feature extraction, a Multi-Scale Dilated Asymmetric Convolution Module to capture multi-scale vasculature, and a Focused Feature Recalibration Module to filter noise and highlight target areas.
Our method achieves efficient global modeling and local feature extraction while maintaining linear complexity, making it suitable for low-computation medical applications.
arXiv Detail & Related papers (2024-09-12T12:47:34Z) - FS-Net: Full Scale Network and Adaptive Threshold for Improving
Extraction of Micro-Retinal Vessel Structures [4.776514178760067]
We propose a full-scale micro-vessel extraction mechanism based on an encoder-decoder neural network architecture.
The proposed solution has been evaluated using the DRIVE, CHASE-DB1, and STARE datasets.
arXiv Detail & Related papers (2023-11-14T10:32:17Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.