Learning From Drift: Federated Learning on Non-IID Data via Drift
Regularization
- URL: http://arxiv.org/abs/2309.07189v1
- Date: Wed, 13 Sep 2023 09:23:09 GMT
- Title: Learning From Drift: Federated Learning on Non-IID Data via Drift
Regularization
- Authors: Yeachan Kim, Bonggun Shin
- Abstract summary: Federated learning algorithms perform reasonably well on independent and identically distributed (IID) data.
They suffer greatly from heterogeneous environments, i.e., Non-IID data.
We propose Learning from Drift (LfD), a novel method for effectively training the model in heterogeneous settings.
- Score: 11.813552364878868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning algorithms perform reasonably well on independent and
identically distributed (IID) data. They, on the other hand, suffer greatly
from heterogeneous environments, i.e., Non-IID data. Despite the fact that many
research projects have been done to address this issue, recent findings
indicate that they are still sub-optimal when compared to training on IID data.
In this work, we carefully analyze the existing methods in heterogeneous
environments. Interestingly, we find that regularizing the classifier's outputs
is quite effective in preventing performance degradation on Non-IID data.
Motivated by this, we propose Learning from Drift (LfD), a novel method for
effectively training the model in heterogeneous settings. Our scheme
encapsulates two key components: drift estimation and drift regularization.
Specifically, LfD first estimates how different the local model is from the
global model (i.e., drift). The local model is then regularized such that it
does not fall in the direction of the estimated drift. In the experiment, we
evaluate each method through the lens of the five aspects of federated
learning, i.e., Generalization, Heterogeneity, Scalability, Forgetting, and
Efficiency. Comprehensive evaluation results clearly support the superiority of
LfD in federated learning with Non-IID data.
Related papers
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Synthetic Data Aided Federated Learning Using Foundation Models [4.666380225768727]
We propose Differentially Private Synthetic Data Aided Federated Learning Using Foundation Models (DPSDA-FL)
Our experimental results have shown that DPSDA-FL can improve class recall and classification accuracy of the global model by up to 26% and 9%, respectively, in FL with Non-IID issues.
arXiv Detail & Related papers (2024-07-06T20:31:43Z) - FedUV: Uniformity and Variance for Heterogeneous Federated Learning [5.9330433627374815]
Federated learning is a promising framework to train neural networks with widely distributed data.
Recent work has shown this is due to the final layer of the network being most prone to local bias.
We investigate the training dynamics of the classifier by applying SVD to the weights motivated by the observation that freezing weights results in constant singular values.
arXiv Detail & Related papers (2024-02-27T15:53:15Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex.
We show that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold.
We propose to improve the optimization of GANs with score matching regularity (SMaRt)
arXiv Detail & Related papers (2023-11-30T03:05:14Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
We propose to enforce a emphconsistency property which states that predictions of the model on its own generated data are consistent across time.
We show that our novel training objective yields state-of-the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in AFHQ and FFHQ.
arXiv Detail & Related papers (2023-02-17T18:45:04Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.