Synthetic Data Aided Federated Learning Using Foundation Models
- URL: http://arxiv.org/abs/2407.05174v1
- Date: Sat, 6 Jul 2024 20:31:43 GMT
- Title: Synthetic Data Aided Federated Learning Using Foundation Models
- Authors: Fatima Abacha, Sin G. Teo, Lucas C. Cordeiro, Mustafa A. Mustafa,
- Abstract summary: We propose Differentially Private Synthetic Data Aided Federated Learning Using Foundation Models (DPSDA-FL)
Our experimental results have shown that DPSDA-FL can improve class recall and classification accuracy of the global model by up to 26% and 9%, respectively, in FL with Non-IID issues.
- Score: 4.666380225768727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In heterogeneous scenarios where the data distribution amongst the Federated Learning (FL) participants is Non-Independent and Identically distributed (Non-IID), FL suffers from the well known problem of data heterogeneity. This leads the performance of FL to be significantly degraded, as the global model tends to struggle to converge. To solve this problem, we propose Differentially Private Synthetic Data Aided Federated Learning Using Foundation Models (DPSDA-FL), a novel data augmentation strategy that aids in homogenizing the local data present on the clients' side. DPSDA-FL improves the training of the local models by leveraging differentially private synthetic data generated from foundation models. We demonstrate the effectiveness of our approach by evaluating it on the benchmark image dataset: CIFAR-10. Our experimental results have shown that DPSDA-FL can improve class recall and classification accuracy of the global model by up to 26% and 9%, respectively, in FL with Non-IID issues.
Related papers
- Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment [1.2499537119440245]
Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources.
This paper provides a comprehensive overview of data heterogeneity in FL within the context of manufacturing.
We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects.
arXiv Detail & Related papers (2024-08-18T17:49:44Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
Federated Learning (FL) is a promising paradigm for decentralized and collaborative model training.
FL struggles with a significant performance reduction and poor convergence when confronted with Non-Independent and Identically Distributed (Non-IID) data distributions.
We introduce Gen-FedSD, a novel approach that harnesses the powerful capability of state-of-the-art text-to-image foundation models.
arXiv Detail & Related papers (2024-05-13T16:57:48Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning (FL) is a distributed training paradigm that enables clients scattered across the world to cooperatively learn a global model without divulging confidential data.
FL faces a significant challenge in the form of heterogeneous data distributions among clients, which leads to a reduction in performance and robustness.
We introduce foundation model distillation to assist in the federated training of lightweight client models and increase their performance under heterogeneous data settings while keeping inference costs low.
arXiv Detail & Related papers (2023-11-14T19:10:56Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.