Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation
- URL: http://arxiv.org/abs/2309.07196v1
- Date: Wed, 13 Sep 2023 13:57:21 GMT
- Title: Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation
- Authors: Tianpu Zhang, Weilong Ding, Mengda Xing
- Abstract summary: Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
- Score: 0.6650227510403052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As one of the important tools for spatial feature extraction, graph
convolution has been applied in a wide range of fields such as traffic flow
prediction. However, current popular works of graph convolution cannot
guarantee spatio-temporal consistency in a long period. The ignorance of
correlational dynamics, convolutional locality and temporal comprehensiveness
would limit predictive accuracy. In this paper, a novel Attention-based Dynamic
Graph Convolutional Recurrent Neural Network (ADGCRNN) is proposed to improve
traffic flow prediction in highway transportation. Three temporal resolutions
of data sequence are effectively integrated by self-attention to extract
characteristics; multi-dynamic graphs and their weights are dynamically created
to compliantly combine the varying characteristics; a dedicated gated kernel
emphasizing highly relative nodes is introduced on these complete graphs to
reduce overfitting for graph convolution operations. Experiments on two public
datasets show our work better than state-of-the-art baselines, and case studies
of a real Web system prove practical benefit in highway transportation.
Related papers
- A novel hybrid time-varying graph neural network for traffic flow forecasting [3.6623539239888556]
Real-time and precise traffic flow prediction is vital for the efficiency of intelligent transportation systems.
Traditional graph neural networks (GNNs) are used to describe spatial correlations among traffic nodes in urban road networks.
We have proposed a novel hybrid time-varying graph neural network (HTVGNN) for traffic flow prediction.
arXiv Detail & Related papers (2024-01-17T07:21:36Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting in this paper.
In STIDGCN, we propose an interactive dynamic graph convolution structure, which first divides the sequences at intervals and captures the spatial-temporal dependence of the traffic data simultaneously.
Experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
arXiv Detail & Related papers (2022-05-18T01:59:30Z) - Dynamic Graph Convolutional Recurrent Network for Traffic Prediction:
Benchmark and Solution [18.309299822858243]
We propose a novel traffic prediction framework, named Dynamic Graph Contemporalal Recurrent Network (DGCRN)
In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes.
We are the first to employ a generation method to model fine iteration of dynamic graph at each time step.
arXiv Detail & Related papers (2021-04-30T11:25:43Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
We propose a factorized Spatial-Temporal Graph Convolutional Network to deal with traffic speed prediction.
To reduce the computational burden, we take Tucker tensor decomposition and derive factorized a tensor convolution.
Experiments on two real-world traffic speed datasets demonstrate our method is more effective than those traditional traffic prediction methods.
arXiv Detail & Related papers (2021-03-10T15:28:07Z) - Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting [47.19400232038575]
We argue that learning node-specific patterns is essential for traffic forecasting while the pre-defined graph is avoidable.
We propose two adaptive modules for enhancing Graph Conal Network (GCN) with new capabilities.
Our experiments on two real-world traffic datasets show AGCRN outperforms state-of-the-art by a significant margin without pre-defined graphs about spatial connections.
arXiv Detail & Related papers (2020-07-06T15:51:10Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.