A novel hybrid time-varying graph neural network for traffic flow forecasting
- URL: http://arxiv.org/abs/2401.10155v4
- Date: Mon, 17 Jun 2024 15:17:56 GMT
- Title: A novel hybrid time-varying graph neural network for traffic flow forecasting
- Authors: Ben-Ao Dai, Bao-Lin Ye, Lingxi Li,
- Abstract summary: Real-time and precise traffic flow prediction is vital for the efficiency of intelligent transportation systems.
Traditional graph neural networks (GNNs) are used to describe spatial correlations among traffic nodes in urban road networks.
We have proposed a novel hybrid time-varying graph neural network (HTVGNN) for traffic flow prediction.
- Score: 3.6623539239888556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time and precise traffic flow prediction is vital for the efficiency of intelligent transportation systems. Traditional methods often employ graph neural networks (GNNs) with predefined graphs to describe spatial correlations among traffic nodes in urban road networks. However, these pre-defined graphs are limited by existing knowledge and graph generation methodologies, offering an incomplete picture of spatial correlations. While time-varying graphs based on data-driven learning have attempted to address these limitations, they still struggle with adequately capturing the inherent spatial correlations in traffic data. Moreover, most current methods for capturing dynamic temporal correlations rely on a unified calculation scheme using a temporal multi-head self-attention mechanism, which at some level might leads to inaccuracies. In order to overcome these challenges, we have proposed a novel hybrid time-varying graph neural network (HTVGNN) for traffic flow prediction. Firstly, a novel enhanced temporal perception multi-head self-attention mechanism based on time-varying mask enhancement was reported to more accurately model the dynamic temporal dependencies among distinct traffic nodes in the traffic network. Secondly, we have proposed a novel graph learning strategy to concurrently learn both static and dynamic spatial associations between different traffic nodes in road networks. Meanwhile, in order to enhance the learning ability of time-varying graphs, a coupled graph learning mechanism was designed to couple the graphs learned at each time step. Finally, the effectiveness of the proposed method HTVGNN was demonstrated with four real data sets. Simulation results revealed that HTVGNN achieves superior prediction accuracy compared to the state of the art spatio-temporal graph neural network models. Additionally, the ablation experiment verifies that the coupled graph learning mechanism can effectively improve the long-term prediction performance of HTVGNN.
Related papers
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting in this paper.
In STIDGCN, we propose an interactive dynamic graph convolution structure, which first divides the sequences at intervals and captures the spatial-temporal dependence of the traffic data simultaneously.
Experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
arXiv Detail & Related papers (2022-05-18T01:59:30Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - CDGNet: A Cross-Time Dynamic Graph-based Deep Learning Model for Traffic
Forecasting [7.169972421976212]
We propose a novel cross-time dynamic graph-based deep learning model, named CDGNet, for traffic forecasting.
We design a gating mechanism to sparse the cross-time dynamic graph, which conforms to the sparse spatial correlations in the real world.
arXiv Detail & Related papers (2021-12-06T01:56:07Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.