LInKs "Lifting Independent Keypoints" -- Partial Pose Lifting for
Occlusion Handling with Improved Accuracy in 2D-3D Human Pose Estimation
- URL: http://arxiv.org/abs/2309.07243v1
- Date: Wed, 13 Sep 2023 18:28:04 GMT
- Title: LInKs "Lifting Independent Keypoints" -- Partial Pose Lifting for
Occlusion Handling with Improved Accuracy in 2D-3D Human Pose Estimation
- Authors: Peter Hardy and Hansung Kim
- Abstract summary: We present LInKs, a novel unsupervised learning method to recover 3D human poses from 2D kinematic skeletons.
Our approach follows a unique two-step process, which involves first lifting the occluded 2D pose to the 3D domain.
This lift-then-fill approach leads to significantly more accurate results compared to models that complete the pose in 2D space alone.
- Score: 4.648549457266638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present LInKs, a novel unsupervised learning method to recover 3D human
poses from 2D kinematic skeletons obtained from a single image, even when
occlusions are present. Our approach follows a unique two-step process, which
involves first lifting the occluded 2D pose to the 3D domain, followed by
filling in the occluded parts using the partially reconstructed 3D coordinates.
This lift-then-fill approach leads to significantly more accurate results
compared to models that complete the pose in 2D space alone. Additionally, we
improve the stability and likelihood estimation of normalising flows through a
custom sampling function replacing PCA dimensionality reduction previously used
in prior work. Furthermore, we are the first to investigate if different parts
of the 2D kinematic skeleton can be lifted independently which we find by
itself reduces the error of current lifting approaches. We attribute this to
the reduction of long-range keypoint correlations. In our detailed evaluation,
we quantify the error under various realistic occlusion scenarios, showcasing
the versatility and applicability of our model. Our results consistently
demonstrate the superiority of handling all types of occlusions in 3D space
when compared to others that complete the pose in 2D space. Our approach also
exhibits consistent accuracy in scenarios without occlusion, as evidenced by a
7.9% reduction in reconstruction error compared to prior works on the Human3.6M
dataset. Furthermore, our method excels in accurately retrieving complete 3D
poses even in the presence of occlusions, making it highly applicable in
situations where complete 2D pose information is unavailable.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Two Views Are Better than One: Monocular 3D Pose Estimation with Multiview Consistency [0.493599216374976]
We propose a novel loss function, multiview consistency, to enable adding additional training data with only 2D supervision.
Our experiments demonstrate that two views offset by 90 degrees are enough to obtain good performance, with only marginal improvements by adding more views.
This research introduces new possibilities for domain adaptation in 3D pose estimation, providing a practical and cost-effective solution to customize models for specific applications.
arXiv Detail & Related papers (2023-11-21T08:21:55Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - Optimising 2D Pose Representation: Improve Accuracy, Stability and
Generalisability Within Unsupervised 2D-3D Human Pose Estimation [7.294965109944706]
We show that the most optimal representation of a 2D pose is that of two independent segments, the torso and legs, with no shared features between each lifting network.
Our results show that the most optimal representation of a 2D pose is that of two independent segments, the torso and legs, with no shared features between each lifting network.
arXiv Detail & Related papers (2022-09-01T17:32:52Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Probabilistic Monocular 3D Human Pose Estimation with Normalizing Flows [24.0966076588569]
We propose a normalizing flow based method that exploits the deterministic 3D-to-2D mapping to solve the ambiguous inverse 2D-to-3D problem.
We evaluate our approach on the two benchmark datasets Human3.6M and MPI-INF-3DHP, outperforming all comparable methods in most metrics.
arXiv Detail & Related papers (2021-07-29T07:33:14Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.