論文の概要: Simultaneous inference for generalized linear models with unmeasured
confounders
- arxiv url: http://arxiv.org/abs/2309.07261v2
- Date: Tue, 26 Sep 2023 19:21:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 18:38:20.382135
- Title: Simultaneous inference for generalized linear models with unmeasured
confounders
- Title(参考訳): 非測定共著者をもつ一般化線形モデルに対する同時推論
- Authors: Jin-Hong Du and Larry Wasserman and Kathryn Roeder
- Abstract要約: 本稿では,構造を利用して線形射影を3つの重要な段階に統合する,統一的な統計的推定と推測の枠組みを提案する。
サンプルおよび応答サイズとして$z$-testsの効果的なType-Iエラー制御が無限大に近づくことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tens of thousands of simultaneous hypothesis tests are routinely performed in
genomic studies to identify differentially expressed genes. However, due to
unmeasured confounders, many standard statistical approaches may be
substantially biased. This paper investigates the large-scale hypothesis
testing problem for multivariate generalized linear models in the presence of
confounding effects. Under arbitrary confounding mechanisms, we propose a
unified statistical estimation and inference framework that harnesses
orthogonal structures and integrates linear projections into three key stages.
It begins by disentangling marginal and uncorrelated confounding effects to
recover the latent coefficients. Subsequently, latent factors and primary
effects are jointly estimated through lasso-type optimization. Finally, we
incorporate projected and weighted bias-correction steps for hypothesis
testing. Theoretically, we establish the identification conditions of various
effects and non-asymptotic error bounds. We show effective Type-I error control
of asymptotic $z$-tests as sample and response sizes approach infinity.
Numerical experiments demonstrate that the proposed method controls the false
discovery rate by the Benjamini-Hochberg procedure and is more powerful than
alternative methods. By comparing single-cell RNA-seq counts from two groups of
samples, we demonstrate the suitability of adjusting confounding effects when
significant covariates are absent from the model.
- Abstract(参考訳): 数万の同時仮説テストがゲノム研究で定期的に行われ、異なる発現遺伝子を同定する。
しかし、計測されていない共同設立者のために、多くの標準的な統計手法は実質的に偏っているかもしれない。
本稿では,多変量一般化線形モデルに対する大規模仮説検定問題について検討する。
任意のコンバウンディング機構の下で,直交構造を利用し,線形射影を3つの重要な段階に統合する統一的な統計的推定と推論フレームワークを提案する。
それは、潜在係数を回復するために、辺縁および非相関な共役効果を分離することから始まる。
その後、ラッソ型最適化により潜在因子と一次効果を共同で推定する。
最後に,予測および重み付けされたバイアス補正ステップを仮説テストに取り入れた。
理論的には、様々な効果と非漸近誤差境界の同定条件を確立する。
asymptotic $z$-tests の type-i エラー制御をサンプルおよび応答サイズとして有効に行う。
数値実験により, 提案手法はベンジャミン・ホックベルク法により偽発見率を制御し, 代替手法よりも強力であることが示された。
2つのサンプル群から得られた単細胞RNA-seq数を比較することにより、モデルから有意な共変量が欠如している場合の共振効果の調整性を示す。
関連論文リスト
- Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Causal Discovery via Conditional Independence Testing with Proxy Variables [35.3493980628004]
潜伏した共同設立者のような未観測変数の存在は、条件付き独立テストにバイアスをもたらす可能性がある。
本研究では,連続変数に対する因果関係の存在を効果的に検証できる仮説テスト手法を提案する。
論文 参考訳(メタデータ) (2023-05-09T09:08:39Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
我々は、異なる、しかし相関のある特徴に基づいて訓練された一般化線形モデルの集合における揺らぎの研究の理論を開発する。
一般凸損失と高次元限界における正則化のための経験的リスク最小化器の結合分布の完全な記述を提供する。
論文 参考訳(メタデータ) (2022-01-31T17:44:58Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - What can the millions of random treatments in nonexperimental data
reveal about causes? [0.0]
この記事ではこのようなモデルとベイズ的アプローチを紹介し、非経験的データで典型的に使用可能な 1(n2)$ のペアワイズ観測を組み合わせる。
提案手法は, 一般のnswサンプル, 任意のサブポピュレーションおよび大容量スーパーサンプルにおいて, 因果効果を回復することを示す。
論文 参考訳(メタデータ) (2021-05-03T20:13:34Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Tracking disease outbreaks from sparse data with Bayesian inference [55.82986443159948]
新型コロナウイルス(COVID-19)のパンデミックは、感染発生時の感染率を推定する新たな動機を与える。
標準的な手法は、より細かいスケールで共通する部分的な観測可能性とスパースなデータに対応するのに苦労する。
原理的に部分観測可能なベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-12T20:37:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。