GAN-based Algorithm for Efficient Image Inpainting
- URL: http://arxiv.org/abs/2309.07293v1
- Date: Wed, 13 Sep 2023 20:28:54 GMT
- Title: GAN-based Algorithm for Efficient Image Inpainting
- Authors: Zhengyang Han, Zehao Jiang, Yuan Ju
- Abstract summary: Global pandemic has post challenges in a new dimension on facial recognition, where people start to wear masks.
Under such condition, the authors consider utilizing machine learning in image inpainting to tackle the problem.
In particular, autoencoder has great potential on retaining important, general features of the image.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Global pandemic due to the spread of COVID-19 has post challenges in a new
dimension on facial recognition, where people start to wear masks. Under such
condition, the authors consider utilizing machine learning in image inpainting
to tackle the problem, by complete the possible face that is originally covered
in mask. In particular, autoencoder has great potential on retaining important,
general features of the image as well as the generative power of the generative
adversarial network (GAN). The authors implement a combination of the two
models, context encoders and explain how it combines the power of the two
models and train the model with 50,000 images of influencers faces and yields a
solid result that still contains space for improvements. Furthermore, the
authors discuss some shortcomings with the model, their possible improvements,
as well as some area of study for future investigation for applicative
perspective, as well as directions to further enhance and refine the model.
Related papers
- BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNet is a novel plug-and-play dual-branch model engineered to embed pixel-level masked image features into any pre-trained DM.
BrushNet's superior performance over existing models across seven key metrics, including image quality, mask region preservation, and textual coherence.
arXiv Detail & Related papers (2024-03-11T17:59:31Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
This work illuminates the fundamental reasons for such misalignment, pinpointing issues related to low attention activation scores and mask overlaps.
We propose two novel objectives, the Separate loss and the Enhance loss, that reduce object mask overlaps and maximize attention scores.
Our method diverges from conventional test-time-adaptation techniques, focusing on finetuning critical parameters, which enhances scalability and generalizability.
arXiv Detail & Related papers (2023-12-10T22:07:42Z) - Conditioning Diffusion Models via Attributes and Semantic Masks for Face
Generation [1.104121146441257]
Deep generative models have shown impressive results in generating realistic images of faces.
GANs managed to generate high-quality, high-fidelity images when conditioned on semantic masks, but they still lack the ability to diversify their output.
We propose a multi-conditioning approach for diffusion models via cross-attention exploiting both attributes and semantic masks to generate high-quality and controllable face images.
arXiv Detail & Related papers (2023-06-01T17:16:37Z) - SARGAN: Spatial Attention-based Residuals for Facial Expression
Manipulation [1.7056768055368383]
We present a novel method named SARGAN that addresses the limitations from three perspectives.
We exploited a symmetric encoder-decoder network to attend facial features at multiple scales.
Our proposed model performs significantly better than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-30T08:15:18Z) - Learning Prior Feature and Attention Enhanced Image Inpainting [63.21231753407192]
This paper incorporates the pre-training based Masked AutoEncoder (MAE) into the inpainting model.
We propose to use attention priors from MAE to make the inpainting model learn more long-distance dependencies between masked and unmasked regions.
arXiv Detail & Related papers (2022-08-03T04:32:53Z) - Towards Robust Blind Face Restoration with Codebook Lookup Transformer [94.48731935629066]
Blind face restoration is a highly ill-posed problem that often requires auxiliary guidance.
We show that a learned discrete codebook prior in a small proxy space cast blind face restoration as a code prediction task.
We propose a Transformer-based prediction network, named CodeFormer, to model global composition and context of the low-quality faces.
arXiv Detail & Related papers (2022-06-22T17:58:01Z) - GMFIM: A Generative Mask-guided Facial Image Manipulation Model for
Privacy Preservation [0.7734726150561088]
We propose a Generative Mask-guided Face Image Manipulation model based on GANs to apply imperceptible editing to the input face image.
Our model can achieve better performance against automated face recognition systems in comparison to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-10T14:09:14Z) - Aggregated Contextual Transformations for High-Resolution Image
Inpainting [57.241749273816374]
We propose an enhanced GAN-based model, named Aggregated COntextual-Transformation GAN (AOT-GAN) for high-resolution image inpainting.
To enhance context reasoning, we construct the generator of AOT-GAN by stacking multiple layers of a proposed AOT block.
For improving texture synthesis, we enhance the discriminator of AOT-GAN by training it with a tailored mask-prediction task.
arXiv Detail & Related papers (2021-04-03T15:50:17Z) - JDSR-GAN: Constructing A Joint and Collaborative Learning Network for
Masked Face Super-Resolution [28.022800882214803]
Face images obtained in most video surveillance scenarios are low resolution with mask simultaneously.
Most of the previous face super-resolution solutions can not handle both tasks in one model.
We construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task.
arXiv Detail & Related papers (2021-03-25T08:50:40Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.