Learning Quasi-Static 3D Models of Markerless Deformable Linear Objects
for Bimanual Robotic Manipulation
- URL: http://arxiv.org/abs/2309.07609v1
- Date: Thu, 14 Sep 2023 11:17:43 GMT
- Title: Learning Quasi-Static 3D Models of Markerless Deformable Linear Objects
for Bimanual Robotic Manipulation
- Authors: Piotr Kicki, Micha{\l} Bidzi\'nski, Krzysztof Walas
- Abstract summary: This paper analyzes several learning-based 3D models of the Deformable Linear Objects (DLOs)
We propose a new one based on the Transformer architecture that achieves superior accuracy, even on the DLOs of different lengths.
We also introduce a data augmentation technique, which improves the prediction performance of almost all considered DLO data-driven models.
- Score: 6.212335606641129
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The robotic manipulation of Deformable Linear Objects (DLOs) is a vital and
challenging task that is important in many practical applications. Classical
model-based approaches to this problem require an accurate model to capture how
robot motions affect the deformation of the DLO. Nowadays, data-driven models
offer the best tradeoff between quality and computation time. This paper
analyzes several learning-based 3D models of the DLO and proposes a new one
based on the Transformer architecture that achieves superior accuracy, even on
the DLOs of different lengths, thanks to the proposed scaling method. Moreover,
we introduce a data augmentation technique, which improves the prediction
performance of almost all considered DLO data-driven models. Thanks to this
technique, even a simple Multilayer Perceptron (MLP) achieves close to
state-of-the-art performance while being significantly faster to evaluate. In
the experiments, we compare the performance of the learning-based 3D models of
the DLO on several challenging datasets quantitatively and demonstrate their
applicability in the task of shaping a DLO.
Related papers
- Is Diversity All You Need for Scalable Robotic Manipulation? [50.747150672933316]
We investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better"<n>We show that task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios.<n>We propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data.
arXiv Detail & Related papers (2025-07-08T17:52:44Z) - ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution [77.86222359025011]
We propose ToolACE-DEV, a self-improving framework for tool learning.<n>First, we decompose the tool-learning objective into sub-tasks that enhance basic tool-making and tool-using abilities.<n>We then introduce a self-evolving paradigm that allows lightweight models to self-improve, reducing reliance on advanced LLMs.
arXiv Detail & Related papers (2025-05-12T12:48:30Z) - 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Study of Dropout in PointPillars with 3D Object Detection [0.0]
3D object detection is critical for autonomous driving, leveraging deep learning techniques to interpret LiDAR data.
This study provides an analysis of enhancing the performance of PointPillars model under various dropout rates.
arXiv Detail & Related papers (2024-09-01T09:30:54Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Real-Time Object Detection in Occluded Environment with Background
Cluttering Effects Using Deep Learning [0.8192907805418583]
We concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background.
The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset.
The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4.
arXiv Detail & Related papers (2024-01-02T01:30:03Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Improving Surrogate Model Robustness to Perturbations for Dynamical Systems Through Machine Learning and Data Assimilation [0.0789257770465417]
We propose a novel framework that combines machine learning and data assimilation techniques to improve surrogate models.
We demonstrate that our framework substantially improves the accuracy of surrogate models under input perturbations.
arXiv Detail & Related papers (2023-07-19T05:45:05Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Can Deep Learning be Applied to Model-Based Multi-Object Tracking? [25.464269324261636]
Multi-object tracking (MOT) is the problem of tracking the state of an unknown and time-varying number of objects using noisy measurements.
Deep learning (DL) has been increasingly used in MOT for improving tracking performance.
In this paper, we propose a Transformer-based DL tracker and evaluate its performance in the model-based setting.
arXiv Detail & Related papers (2022-02-16T07:43:08Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.