論文の概要: A Conversation is Worth A Thousand Recommendations: A Survey of Holistic
Conversational Recommender Systems
- arxiv url: http://arxiv.org/abs/2309.07682v1
- Date: Thu, 14 Sep 2023 12:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 14:58:43.298275
- Title: A Conversation is Worth A Thousand Recommendations: A Survey of Holistic
Conversational Recommender Systems
- Title(参考訳): 会話は数千の勧告の価値である:全体論のレコメンデーションシステムに関する調査
- Authors: Chuang Li, Hengchang Hu, Yan Zhang, Min-Yen Kan and Haizhou Li
- Abstract要約: 会話レコメンデータシステムは対話的なプロセスを通じてレコメンデーションを生成する。
すべてのCRSアプローチが、インタラクションデータのソースとして人間の会話を使用するわけではない。
全体論的CRSは、現実世界のシナリオから収集された会話データを使って訓練される。
- 参考スコア(独自算出の注目度): 54.78815548652424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational recommender systems (CRS) generate recommendations through an
interactive process. However, not all CRS approaches use human conversations as
their source of interaction data; the majority of prior CRS work simulates
interactions by exchanging entity-level information. As a result, claims of
prior CRS work do not generalise to real-world settings where conversations
take unexpected turns, or where conversational and intent understanding is not
perfect. To tackle this challenge, the research community has started to
examine holistic CRS, which are trained using conversational data collected
from real-world scenarios. Despite their emergence, such holistic approaches
are under-explored.
We present a comprehensive survey of holistic CRS methods by summarizing the
literature in a structured manner. Our survey recognises holistic CRS
approaches as having three components: 1) a backbone language model, the
optional use of 2) external knowledge, and/or 3) external guidance. We also
give a detailed analysis of CRS datasets and evaluation methods in real
application scenarios. We offer our insight as to the current challenges of
holistic CRS and possible future trends.
- Abstract(参考訳): 会話推薦システム(CRS)は対話的なプロセスを通じてレコメンデーションを生成する。
しかしながら、すべてのCRSアプローチは、人間の会話をインタラクションデータのソースとして使用するわけではない。
結果として、従来のCRS作業の主張は、会話が予期せぬ回転をしたり、会話や意図の理解が完璧でない現実世界の設定に一般化されない。
この課題に取り組むため、研究コミュニティは、現実世界のシナリオから収集した会話データを使用してトレーニングされる総合的なcrsを調査し始めた。
それらの出現にもかかわらず、そのような全体論的アプローチは未解明である。
文献を構造化した方法で要約し,総合的なCRS手法の総合的な調査を行う。
我々の調査は、全体論的なCRSアプローチを3つの要素を持つと認識している。
1) バックボーン言語モデル、オプション使用
2外部知識及び/又は
3)外部ガイダンス。
また、実アプリケーションシナリオにおけるCRSデータセットと評価方法の詳細な分析を行う。
我々は、全体論的なCRSの現在の課題と将来的なトレンドに関する洞察を提供する。
関連論文リスト
- Improving Conversational Recommendation Systems via Counterfactual Data
Simulation [73.4526400381668]
会話推薦システム(CRS)は、自然言語による会話を通じてレコメンデーションサービスを提供することを目的としている。
既存のCRSアプローチは、トレーニングデータの不足により、トレーニングの不十分な問題に悩まされることが多い。
我々は,CRSにおけるデータ不足の問題を緩和するため,CFCRSと呼ばれるCRSに対するCounterFactualデータシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2023-06-05T12:48:56Z) - Conversational Recommendation as Retrieval: A Simple, Strong Baseline [4.737923227003888]
会話レコメンデーションシステム(CRS)は,自然言語会話を通じて適切な項目をユーザに推薦することを目的としている。
ほとんどのCRSアプローチは、これらの会話によって提供されるシグナルを効果的に利用しない。
CRS項目推薦タスクに対して、代替情報検索(IR)スタイルのアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-23T06:21:31Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z) - EGCR: Explanation Generation for Conversational Recommendation [7.496434082286226]
対話エージェントがなぜ行動を起こすのかを説明するための説明文を生成することに基づく会話推薦のための説明生成(EGCR)。
EGCRはユーザレビューを取り入れて項目表現を強化し、会話全体の情報性を高める。
EGCRを1つのベンチマークの会話推薦データセット上で評価し、他の最先端技術モデルと比較して、推奨精度と会話品質の両方で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-08-17T02:30:41Z) - KECRS: Towards Knowledge-Enriched Conversational Recommendation System [50.0292306485452]
chit-chatベースの会話レコメンデーションシステム(crs)は、自然言語インタラクションを通じてユーザーにアイテムレコメンデーションを提供する。
外部知識グラフ(KG)がChit-chatベースのCRSに導入されている。
KECRS(Knowledge-Enriched Conversational Recommendation System)の提案
大規模データセットの実験結果は、KECRSが最先端のキトチャットベースのCRSを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-05-18T03:52:06Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
現在の会話レコメンダーシステム(CRS)で使用されるテクニックの体系的なレビューを提供します。
CRS開発の主な課題を5つの方向にまとめます。
これらの研究の方向性は、情報検索(IR)、自然言語処理(NLP)、人間とコンピュータの相互作用(HCI)などの複数の研究分野を含みます。
論文 参考訳(メタデータ) (2021-01-23T08:53:15Z) - Deep Conversational Recommender Systems: A New Frontier for
Goal-Oriented Dialogue Systems [54.06971074217952]
Conversational Recommender System (CRS)は対話型対話を通じてユーザの好みを学習し、モデル化する。
ディープラーニングアプローチはCRSに適用され、実りある結果を生み出した。
論文 参考訳(メタデータ) (2020-04-28T02:20:42Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
会話レコメンデータシステム(CRS)は異なるアプローチを採用し、よりリッチなインタラクションをサポートする。
CRSに対する関心は、ここ数年で大幅に増加した。
この開発は主に自然言語処理の分野における著しい進歩によるものである。
論文 参考訳(メタデータ) (2020-04-01T18:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。