論文の概要: Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API
Names?
- arxiv url: http://arxiv.org/abs/2309.07804v1
- Date: Thu, 14 Sep 2023 15:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 12:34:51.797148
- Title: Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API
Names?
- Title(参考訳): ポップクイズ!
トレーニング済みのコードモデルは、正しいAPI名を知っているか?
- Authors: Terry Yue Zhuo, Xiaoning Du, Zhenchang Xing, Jiamou Sun, Haowei Quan,
Li Li, Liming Zhu
- Abstract要約: CodeBERTやCodexのようなトレーニング済みのコードモデルの最近のブレークスルーは、さまざまな下流タスクにおいて、優れたパフォーマンスを示している。
最近の研究によると、最先端の事前訓練されたコードモデルでさえ、コード生成中に正しいAPIを提案することに苦労している。
- 参考スコア(独自算出の注目度): 28.86399157983769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex,
have shown their superior performance in various downstream tasks. The
correctness and unambiguity of API usage among these code models are crucial
for achieving desirable program functionalities, requiring them to learn
various API fully qualified names structurally and semantically. Recent studies
reveal that even state-of-the-art pre-trained code models struggle with
suggesting the correct APIs during code generation. However, the reasons for
such poor API usage performance are barely investigated. To address this
challenge, we propose using knowledge probing as a means of interpreting code
models, which uses cloze-style tests to measure the knowledge stored in models.
Our comprehensive study examines a code model's capability of understanding API
fully qualified names from two different perspectives: API call and API import.
Specifically, we reveal that current code models struggle with understanding
API names, with pre-training strategies significantly affecting the quality of
API name learning. We demonstrate that natural language context can assist code
models in locating Python API names and generalize Python API name knowledge to
unseen data. Our findings provide insights into the limitations and
capabilities of current pre-trained code models, and suggest that incorporating
API structure into the pre-training process can improve automated API usage and
code representations. This work provides significance for advancing code
intelligence practices and direction for future studies. All experiment
results, data and source code used in this work are available at
\url{https://doi.org/10.5281/zenodo.7902072}.
- Abstract(参考訳): CodeBERTやCodexのようなトレーニング済みのコードモデルの最近のブレークスルーは、さまざまな下流タスクにおいて、優れたパフォーマンスを示している。
これらのコードモデル間のapi使用の正確性とあいまいさは、望ましいプログラム機能を達成するために不可欠であり、様々なapiを構造的および意味的に完全に修飾された名前を学ぶ必要がある。
最近の研究によると、最先端の事前訓練されたコードモデルでさえ、コード生成中に正しいAPIを提案することに苦労している。
しかし、このようなAPI使用率低下の理由はほとんど調査されていない。
この課題に対処するために,clozeスタイルのテストを用いてモデルに格納された知識を測定するコードモデルの解釈手段として,知識探索の利用を提案する。
包括的調査では,APIコールとAPIインポートという2つの視点から,APIの完全修飾名を理解するためのコードモデルの能力について検討した。
具体的には、現在のコードモデルがAPI名を理解するのに苦労していることを明らかにする。
自然言語のコンテキストは、Python APIの名前の特定や、Python APIの名前の知識の一般化において、コードモデルを支援することができる。
今回の調査結果は,現在の事前トレーニング済みコードモデルの限界と能力に関する洞察を提供し,事前トレーニングプロセスにapi構造を組み込むことで,api使用自動化とコード表現の改善が期待できる。
この研究は、コードインテリジェンスの実践を前進させ、今後の研究の方向性を示す。
この研究で使用されるすべての実験結果、データおよびソースコードは \url{https://doi.org/10.5281/zenodo.7902072} で入手できる。
関連論文リスト
- Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models [49.214291813478695]
AIアプリケーションで広く使用されているディープラーニング(DL)ライブラリは、オーバーフローやバッファフリーエラーなどの脆弱性を含むことが多い。
従来のファジィングはDLライブラリの複雑さとAPIの多様性に悩まされている。
DLライブラリのためのLLM駆動ファジィ手法であるDFUZZを提案する。
論文 参考訳(メタデータ) (2025-01-08T07:07:22Z) - APIRL: Deep Reinforcement Learning for REST API Fuzzing [3.053989095162017]
APIRLは、REST APIをテストするための、完全に自動化された深層強化学習ツールである。
APIRLは、現実世界のREST APIの最先端よりも、はるかに多くのバグを見つけることができます。
論文 参考訳(メタデータ) (2024-12-20T15:40:51Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoderはトレーニング不要のフレームワークで、大規模な言語モデルにコードソリューションで見えないAPIを呼び出す権限を与える。
ExploraCoderは,事前のAPI知識を欠いたモデルのパフォーマンスを著しく向上させ,NAGアプローチの11.24%,pass@10の事前トレーニングメソッドの14.07%を絶対的に向上させることを示す。
論文 参考訳(メタデータ) (2024-12-06T19:00:15Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API提案は、現代のソフトウェア開発において重要なタスクである。
大規模コードモデル(LCM)の最近の進歩は、API提案タスクにおいて有望であることを示している。
論文 参考訳(メタデータ) (2024-09-20T03:12:35Z) - FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking [57.53742155914176]
APIコール生成は、大規模言語モデルのツール使用能力の基盤となっている。
既存の教師付きおよびコンテキスト内学習アプローチは、高いトレーニングコスト、低いデータ効率、APIドキュメントとユーザの要求に反する生成APIコールに悩まされる。
本稿では,これらの制約に対処するため,FANTASEと呼ばれる出力側最適化手法を提案する。
論文 参考訳(メタデータ) (2024-07-18T23:44:02Z) - A Solution-based LLM API-using Methodology for Academic Information Seeking [49.096714812902576]
SoAyは学術情報検索のためのソリューションベースのLLM API利用方法論である。
ソリューションが事前に構築されたAPI呼び出しシーケンスである場合、推論メソッドとしてソリューションを備えたコードを使用する。
その結果、最先端のLLM APIベースのベースラインと比較して34.58-75.99%のパフォーマンス改善が見られた。
論文 参考訳(メタデータ) (2024-05-24T02:44:14Z) - Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning [14.351476383642016]
そこで我々は,Stack OverflowコードスニペットのAPIzationを自動的に実行する,Code2APIという新しいアプローチを提案する。
Code2APIは、追加のモデルトレーニングや手作業のルールを必要としない。
他の外部ツールに頼ることなく、パーソナルコンピュータに簡単にデプロイできる。
論文 参考訳(メタデータ) (2024-05-06T14:22:17Z) - APICom: Automatic API Completion via Prompt Learning and Adversarial
Training-based Data Augmentation [6.029137544885093]
APIレコメンデーションは、開発者が多数の候補APIの中で必要なAPIを見つけるのを支援するプロセスである。
これまでの研究では、主にAPIレコメンデーションをレコメンデーションタスクとしてモデル化していた。
ニューラルネットワーク翻訳研究領域に動機づけられたこの問題を生成タスクとしてモデル化することができる。
提案手法は,プロンプト学習に基づく新しいアプローチAPIComを提案し,そのプロンプトに応じてクエリに関連するAPIを生成する。
論文 参考訳(メタデータ) (2023-09-13T15:31:50Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
本稿では,大規模言語モデル(LLM)をプライベートライブラリのコード生成に活用することに焦点を当てる。
プログラマがプライベートコードを書く過程をエミュレートする新しいフレームワークを提案する。
TorchDataEval、TorchDataComplexEval、MonkeyEval、BeatNumEvalの4つのプライベートライブラリベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-28T07:43:13Z) - When Language Model Meets Private Library [25.610036042971043]
実際には、プログラマはプライベートライブラリを使ってコードを書くことが一般的である。
これは、トレーニング中にプライベートAPIを見たことがないため、言語モデルにとっての課題である。
APIRetrieverは有用なAPIを見つけ、APICoderはこれらのAPIを使ってコードを生成する。
論文 参考訳(メタデータ) (2022-10-31T11:42:06Z) - On the Effectiveness of Pretrained Models for API Learning [8.788509467038743]
開発者は、Excelファイルのパース、行ごとのテキストファイルの読み書きなど、特定の機能を実装するためにAPIを使うことが多い。
開発者は、より高速でクリーンな方法でアプリケーションを構築するために、自然言語クエリに基づいた自動API使用シーケンス生成の恩恵を受けることができる。
既存のアプローチでは、クエリが与えられたAPIシーケンスの検索や、RNNベースのエンコーダデコーダを使用してAPIシーケンスを生成するために、情報検索モデルを使用している。
論文 参考訳(メタデータ) (2022-04-05T20:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。