Directed Scattering for Knowledge Graph-based Cellular Signaling
Analysis
- URL: http://arxiv.org/abs/2309.07813v1
- Date: Thu, 14 Sep 2023 15:59:23 GMT
- Title: Directed Scattering for Knowledge Graph-based Cellular Signaling
Analysis
- Authors: Aarthi Venkat, Joyce Chew, Ferran Cardoso Rodriguez, Christopher J.
Tape, Michael Perlmutter, Smita Krishnaswamy
- Abstract summary: We propose a new framework called Directed Scattering Autoencoder (DSAE) which uses a directed version of a geometric scattering transform.
We show this method outperforms numerous others on tasks such as embedding directed graphs and learning cellular signaling networks.
- Score: 6.5879443786840035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Directed graphs are a natural model for many phenomena, in particular
scientific knowledge graphs such as molecular interaction or chemical reaction
networks that define cellular signaling relationships. In these situations,
source nodes typically have distinct biophysical properties from sinks. Due to
their ordered and unidirectional relationships, many such networks also have
hierarchical and multiscale structure. However, the majority of methods
performing node- and edge-level tasks in machine learning do not take these
properties into account, and thus have not been leveraged effectively for
scientific tasks such as cellular signaling network inference. We propose a new
framework called Directed Scattering Autoencoder (DSAE) which uses a directed
version of a geometric scattering transform, combined with the non-linear
dimensionality reduction properties of an autoencoder and the geometric
properties of the hyperbolic space to learn latent hierarchies. We show this
method outperforms numerous others on tasks such as embedding directed graphs
and learning cellular signaling networks.
Related papers
- Discovering Message Passing Hierarchies for Mesh-Based Physics Simulation [61.89682310797067]
We introduce DHMP, which learns Dynamic Hierarchies for Message Passing networks through a differentiable node selection method.
Our experiments demonstrate the effectiveness of DHMP, achieving 22.7% improvement on average compared to recent fixed-hierarchy message passing networks.
arXiv Detail & Related papers (2024-10-03T15:18:00Z) - Formal Verification of Graph Convolutional Networks with Uncertain Node Features and Uncertain Graph Structure [7.133681867718039]
Graph neural networks are becoming increasingly popular in the field of machine learning.
They have been applied in safety-critical environments where perturbations inherently occur.
This research addresses the non-passing gap by preserving the dependencies of all elements in the underlying computations.
arXiv Detail & Related papers (2024-04-23T14:12:48Z) - Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs [2.389598109913754]
We propose two graph neural network layers for graphs with features in a Riemannian manifold.
We show that both layers are equivariant under node permutations and the feature manifold's isometries.
While they apply to a much broader class of problems, they perform as well as or better than task-specific state-of-the-art networks.
arXiv Detail & Related papers (2024-01-25T18:36:10Z) - Task structure and nonlinearity jointly determine learned
representational geometry [0.0]
We show that Tanh networks tend to learn representations that reflect the structure of the target outputs, while ReLU networks retain more information about the structure of the raw inputs.
Our findings shed light on the interplay between input-output geometry, nonlinearity, and learned representations in neural networks.
arXiv Detail & Related papers (2024-01-24T16:14:38Z) - Centered Self-Attention Layers [89.21791761168032]
The self-attention mechanism in transformers and the message-passing mechanism in graph neural networks are repeatedly applied.
We show that this application inevitably leads to oversmoothing, i.e., to similar representations at the deeper layers.
We present a correction term to the aggregating operator of these mechanisms.
arXiv Detail & Related papers (2023-06-02T15:19:08Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Attributed Multi-order Graph Convolutional Network for Heterogeneous
Graphs [29.618952407794783]
We propose anAttributed Multi-Order Graph Convolutional Network (AMOGCN), which automatically studies meta-paths containing multi-hop neighbors.
AMOGCN gains superior semi-supervised classification performance compared with state-of-the-art competitors.
arXiv Detail & Related papers (2023-04-13T08:31:16Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.