Learnable Filters for Geometric Scattering Modules
- URL: http://arxiv.org/abs/2208.07458v1
- Date: Mon, 15 Aug 2022 22:30:07 GMT
- Title: Learnable Filters for Geometric Scattering Modules
- Authors: Alexander Tong, Frederik Wenkel, Dhananjay Bhaskar, Kincaid Macdonald,
Jackson Grady, Michael Perlmutter, Smita Krishnaswamy, Guy Wolf
- Abstract summary: We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
- Score: 64.03877398967282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new graph neural network (GNN) module, based on relaxations of
recently proposed geometric scattering transforms, which consist of a cascade
of graph wavelet filters. Our learnable geometric scattering (LEGS) module
enables adaptive tuning of the wavelets to encourage band-pass features to
emerge in learned representations. The incorporation of our LEGS-module in GNNs
enables the learning of longer-range graph relations compared to many popular
GNNs, which often rely on encoding graph structure via smoothness or similarity
between neighbors. Further, its wavelet priors result in simplified
architectures with significantly fewer learned parameters compared to competing
GNNs. We demonstrate the predictive performance of LEGS-based networks on graph
classification benchmarks, as well as the descriptive quality of their learned
features in biochemical graph data exploration tasks. Our results show that
LEGS-based networks match or outperforms popular GNNs, as well as the original
geometric scattering construction, on many datasets, in particular in
biochemical domains, while retaining certain mathematical properties of
handcrafted (non-learned) geometric scattering.
Related papers
- Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
We propose a novel and flexible truss-based graph sparsification model that prunes edges from dense regions of the graph.
We then utilize our sparsification model in the state-of-the-art baseline GNNs and pooling models, such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL, DMonPool, and AdamGNN.
arXiv Detail & Related papers (2024-07-16T17:21:36Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification.
We introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform.
We show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
arXiv Detail & Related papers (2023-10-26T17:03:14Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.