Large-scale Weakly Supervised Learning for Road Extraction from
Satellite Imagery
- URL: http://arxiv.org/abs/2309.07823v1
- Date: Thu, 14 Sep 2023 16:16:57 GMT
- Title: Large-scale Weakly Supervised Learning for Road Extraction from
Satellite Imagery
- Authors: Shiqiao Meng, Zonglin Di, Siwei Yang, Yin Wang
- Abstract summary: This paper proposes to leverage OpenStreetMap road data as weak labels and large scale satellite imagery to pre-train semantic segmentation models.
Using as much as 100 times more data than the widely used DeepGlobe road dataset, our model exceeds the top performer of the current DeepGlobe leaderboard.
- Score: 9.28701721082481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic road extraction from satellite imagery using deep learning is a
viable alternative to traditional manual mapping. Therefore it has received
considerable attention recently. However, most of the existing methods are
supervised and require pixel-level labeling, which is tedious and error-prone.
To make matters worse, the earth has a diverse range of terrain, vegetation,
and man-made objects. It is well known that models trained in one area
generalize poorly to other areas. Various shooting conditions such as light and
angel, as well as different image processing techniques further complicate the
issue. It is impractical to develop training data to cover all image styles.
This paper proposes to leverage OpenStreetMap road data as weak labels and
large scale satellite imagery to pre-train semantic segmentation models. Our
extensive experimental results show that the prediction accuracy increases with
the amount of the weakly labeled data, as well as the road density in the areas
chosen for training. Using as much as 100 times more data than the widely used
DeepGlobe road dataset, our model with the D-LinkNet architecture and the
ResNet-50 backbone exceeds the top performer of the current DeepGlobe
leaderboard. Furthermore, due to large-scale pre-training, our model
generalizes much better than those trained with only the curated datasets,
implying great application potential.
Related papers
- Cross Pseudo Supervision Framework for Sparsely Labelled Geospatial Images [0.0]
Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning.
This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images.
We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data.
arXiv Detail & Related papers (2024-08-05T11:14:23Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
We present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets.
Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting.
arXiv Detail & Related papers (2023-12-06T16:53:17Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
Building footprint maps offer promise of precise footprint extraction without extensive post-processing.
Deep learning methods face challenges in generalization and label efficiency.
We propose terrain-aware self-supervised learning tailored to remote sensing.
arXiv Detail & Related papers (2023-11-02T12:34:23Z) - Self-Supervised Masked Digital Elevation Models Encoding for
Low-Resource Downstream Tasks [0.6374763930914523]
GeoAI is uniquely poised to take advantage of the self-supervised methodology due to the decades of data collected.
The proposed architecture is the Masked Autoencoder pre-trained on ImageNet.
arXiv Detail & Related papers (2023-09-06T21:20:10Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
We present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images.
We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images.
CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
arXiv Detail & Related papers (2023-05-01T23:11:18Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
Deep learning models rely on the abundance of labelled observations to train a prospective model.
It is expensive to gather labelled observations of data, making the usage of deep learning models not ideal.
In many situations different unlabelled data sources might be available.
This raises the risk of a significant distribution mismatch between the labelled and unlabelled datasets.
arXiv Detail & Related papers (2022-03-01T02:46:00Z) - Stereo Matching by Self-supervision of Multiscopic Vision [65.38359887232025]
We propose a new self-supervised framework for stereo matching utilizing multiple images captured at aligned camera positions.
A cross photometric loss, an uncertainty-aware mutual-supervision loss, and a new smoothness loss are introduced to optimize the network.
Our model obtains better disparity maps than previous unsupervised methods on the KITTI dataset.
arXiv Detail & Related papers (2021-04-09T02:58:59Z) - PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite
Imagery with Multi-stage Training [4.694536172504848]
Road network and building footprint extraction is essential for many applications such as updating maps, traffic regulations, city planning, ride-hailing, disaster response textitetc.
arXiv Detail & Related papers (2020-10-14T10:23:48Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
We propose a novel database generation method that requires no real image from the target-domain, and (ii) templates of the traffic signs.
The method does not aim at overcoming the training with real data, but to be a compatible alternative when the real data is not available.
On large data sets, training with a fully synthetic data set almost matches the performance of training with a real one.
arXiv Detail & Related papers (2020-07-30T21:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.