論文の概要: Ambiguity-Aware In-Context Learning with Large Language Models
- arxiv url: http://arxiv.org/abs/2309.07900v1
- Date: Thu, 14 Sep 2023 17:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 11:53:39.347792
- Title: Ambiguity-Aware In-Context Learning with Large Language Models
- Title(参考訳): 大言語モデルを用いたあいまいさを考慮したインコンテキスト学習
- Authors: Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan, Kazuma Hashimoto,
Karthik Raman, Michael Bendersky
- Abstract要約: インコンテキスト学習(ICL)、すなわち、LLMのタスク固有のデモは、タスク固有の微調整を必要とせず、ダウンストリームのゲインにつながった。
そこで本研究では,ICLの優れた実演方法について検討する。
意味的に類似したICLのデモンストレーションを選択するだけでなく、固有のラベルのあいまいさを解決するのに役立つものを選択することは有益である。
- 参考スコア(独自算出の注目度): 27.20414960164616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) i.e. showing LLMs only a few task-specific
demonstrations has led to downstream gains with no task-specific fine-tuning
required. However, LLMs are sensitive to the choice of prompts, and therefore a
crucial research question is how to select good demonstrations for ICL. One
effective strategy is leveraging semantic similarity between the ICL
demonstrations and test inputs by using a text retriever, which however is
sub-optimal as that does not consider the LLM's existing knowledge about that
task. From prior work (Min et al., 2022), we already know that labels paired
with the demonstrations bias the model predictions. This leads us to our
hypothesis whether considering LLM's existing knowledge about the task,
especially with respect to the output label space can help in a better
demonstration selection strategy. Through extensive experimentation on three
text classification tasks, we find that it is beneficial to not only choose
semantically similar ICL demonstrations but also to choose those demonstrations
that help resolve the inherent label ambiguity surrounding the test example.
Interestingly, we find that including demonstrations that the LLM previously
mis-classified and also fall on the test example's decision boundary, brings
the most performance gain.
- Abstract(参考訳): インコンテキスト学習(ICL)、すなわち、LLMはいくつかのタスク固有のデモしか示さず、タスク固有の微調整が不要なダウンストリームゲインにつながった。
しかし、LSMはプロンプトの選択に敏感であるため、ICLの優れたデモンストレーションをどのように選択するかが重要な研究課題である。
効果的な戦略の1つは、ICLのデモンストレーションとテストインプットのセマンティックな類似性をテキストレトリバーを用いて活用することである。
以前の作業(Min et al., 2022)から、ラベルとデモのペアがモデル予測に偏っていることが分かっています。
これにより、LCMの既存のタスクに関する知識、特に出力ラベル空間に関する知識を考えることで、より良い実証選択戦略が実現できるのではないかという仮説が導かれる。
3つのテキスト分類タスクの広範な実験を通じて、意味的に類似したiclのデモンストレーションを選択するだけでなく、テスト例を取り巻く固有のラベルの曖昧さを解決するためのデモを選択することが有用であることがわかった。
興味深いことに、llmが以前誤って分類され、テスト例の判断境界に落ちているデモを含めると、最もパフォーマンスが向上する。
関連論文リスト
- In-Context Transfer Learning: Demonstration Synthesis by Transferring Similar Tasks [93.46282380831339]
コンテキスト内学習は、ターゲットタスクのデモを提供することで、大きな言語モデルが様々なタスクに適応するのに役立つ。
提案するICTL(In-Context Transfer Learning)は,類似のソースタスクからラベル付きデモを転送することで,ターゲットタスクのデモンストレーションを合成する。
Super-NIの実験では、ICTLはスクラッチから平均2.0%の効率で合成に優れていた。
論文 参考訳(メタデータ) (2024-10-02T13:37:54Z) - What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)と呼ばれるデモで提示されたインコンテキストの例から新しいタスクを学習する
一般的な仮説の一つは、タスク選択によるICLの説明である。
もう一つの一般的な仮説は、ICLはメタ学習の一形態である、すなわち、モデルが事前学習時に学習アルゴリズムを学習し、それを実演に適用する、というものである。
論文 参考訳(メタデータ) (2024-06-06T16:15:34Z) - Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning [41.606494950216764]
In-context Learning (ICL)は、スケールアップされた大規模言語モデル(LLM)の開発と共に強力な能力として登場した。
本稿では,ICLの全体的な性能をラベル空間,フォーマット,識別の3次元に分解する。
ICLはラベル空間とフォーマットを制御し,所望のラベル語にLLMが反応するのに役立つことを示す。
論文 参考訳(メタデータ) (2024-04-11T08:20:10Z) - Comparable Demonstrations are Important in In-Context Learning: A Novel
Perspective on Demonstration Selection [22.29452683679149]
In-Context Learning(ICL)は、大規模言語モデル(LLM)をダウンストリームタスクに適用するための重要なパラダイムである。
本研究は、ICLのメカニズムを新しい視点から検討し、ICLの実証選択戦略についてより深い知見を提供する。
論文 参考訳(メタデータ) (2023-12-12T18:05:46Z) - Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning [23.932500424117244]
In-Context Learning (ICL)は大規模言語モデル(LLM)の創発的能力である
従来の研究では、ラベルとしてLLMの出力を使用することが、デモを選択するためのトレーニングモデルに有効であることが示されている。
本稿では,LLMの出力確率に着目して,異なるユーティリティ関数の解析を行う。
論文 参考訳(メタデータ) (2023-11-16T07:03:54Z) - Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks [54.153914606302486]
大規模言語モデル(LLM)の規模拡大に伴い、インコンテキスト学習(ICL)能力が出現した。
我々は、オープンドメイン質問応答におけるICLのパワーを探るため、Hint-enhanced In-Context Learning(HICL)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-03T14:39:20Z) - Are Human-generated Demonstrations Necessary for In-context Learning? [22.783456038837794]
SEC(Self-contemplation prompting Strategy)は、人為的なデモンストレーションのないパラダイムである。
算術推論、常識推論、マルチタスク言語理解、コード生成ベンチマークにおける大規模な実験は、SECがゼロショット学習戦略を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2023-09-26T05:10:08Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - What In-Context Learning "Learns" In-Context: Disentangling Task
Recognition and Task Learning [24.395288160951118]
大規模言語モデル(LLM)は、いくつかのデモでタスクを解くためにコンテキスト内学習(ICL)を利用する。
ICLがデモを利用する2つの方法の特徴付けを行う。
TRのみを用いて非自明な性能を達成でき、TRはより大きなモデルやより多くのデモでさらに改善されないことを示す。
論文 参考訳(メタデータ) (2023-05-16T18:05:19Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。