Classifying fermionic states via many-body correlation measures
- URL: http://arxiv.org/abs/2309.07956v2
- Date: Tue, 23 Apr 2024 21:17:44 GMT
- Title: Classifying fermionic states via many-body correlation measures
- Authors: Mykola Semenyakin, Yevheniia Cheipesh, Yaroslav Herasymenko,
- Abstract summary: We make progress in establishing the link between fermionic correlations and efficient computational physics methods.
We find a rigorous classification of states relative to $k$-fermion correlations, which admits a computational physics interpretation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the structure of quantum correlations in a many-body system is key to its computational treatment. For fermionic systems, correlations can be defined as deviations from Slater determinant states. The link between fermionic correlations and efficient computational physics methods is actively studied but remains ambiguous. We make progress in establishing this connection mathematically. In particular, we find a rigorous classification of states relative to $k$-fermion correlations, which admits a computational physics interpretation. Correlations are captured by a measure $\omega_k$, a function of $k$-fermion reduced density matrix that we call twisted purity. Vanishing of $\omega_k$ for a given $k$ puts the state in a class $G_k$ of correlated states. Sets $G_k$ are nested in $k$, Slater determinants correspond to $k = 1$. Various physically relevant states are in or close to $G_{k=O(1)}$, including truncated configuration-interaction states, perturbation series around Slater determinants, and some nonperturbative eigenstates of the 1D Hubbard model. For each $k = O(1)$, we give an explicit ansatz with a polynomial number of parameters that covers all states in $G_k$. Potential applications of this ansatz and its connections to the coupled-cluster wavefunction are discussed.
Related papers
- Superdense Coding and Stabiliser Codes with Ising-coupled Entanglement [0.0]
A new class of quantum states is introduced by demanding that the computational measurement statistics approach the Boltzmann distribution of higher-order strongly coupled Ising models.
The states, referred to as $n$-coupled states, are superpositions of even or odd parity $n$-qubit states, generalize Bell states, and form an orthonormal basis for the $n$-qubit Hilbert space.
arXiv Detail & Related papers (2024-04-09T16:54:34Z) - Adversarial Quantum Machine Learning: An Information-Theoretic
Generalization Analysis [39.889087719322184]
We study the generalization properties of quantum classifiers adversarially trained against bounded-norm white-box attacks.
We derive novel information-theoretic upper bounds on the generalization error of adversarially trained quantum classifiers.
arXiv Detail & Related papers (2024-01-31T21:07:43Z) - Learning finitely correlated states: stability of the spectral reconstruction [1.9573380763700716]
We show that marginals of blocks of $t$ systems of any finitely correlated translation invariant state on a chain can be learned, in trace distance, with $O(t2)$ copies.
The algorithm requires only the estimation of a marginal of a controlled size, in the worst case bounded by the minimum bond dimension.
arXiv Detail & Related papers (2023-12-12T18:47:12Z) - Nonlocality under Computational Assumptions [51.020610614131186]
A set of correlations is said to be nonlocal if it cannot be reproduced by spacelike-separated parties sharing randomness and performing local operations.
We show that there exist (efficient) local producing measurements that cannot be reproduced through randomness and quantum-time computation.
arXiv Detail & Related papers (2023-03-03T16:53:30Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Stochastic behavior of outcome of Schur-Weyl duality measurement [45.41082277680607]
We focus on the measurement defined by the decomposition based on Schur-Weyl duality on $n$ qubits.
We derive various types of distribution including a kind of central limit when $n$ goes to infinity.
arXiv Detail & Related papers (2021-04-26T15:03:08Z) - Constructing a ball of separable and absolutely separable states for
$2\otimes d$ quantum system [0.0]
We find that the absolute separable states are useful in quantum computation even if it contains infinitesimal quantum correlation in it.
In particular, for qubit-qudit system, we show that the newly constructed ball contain larger class of absolute separable states.
arXiv Detail & Related papers (2020-07-02T05:34:57Z) - Correlations in geometric states [0.0]
We show the covex combination of geometric states cannot be a geometric state.
By using the Koashi-Winter relation of tripartite states the quantum and classical correlations between $A$ and $B$ can expressed as Holevo information.
arXiv Detail & Related papers (2020-03-09T06:09:25Z) - Self-Organized Error Correction in Random Unitary Circuits with
Measurement [0.0]
We quantify a universal, subleading logarithmic contribution to the volume law entanglement entropy.
We find that measuring a qudit deep inside $A$ will have negligible effect on the entanglement of $A$.
We assume that the volume-law state is an encoding of a Page state in a quantum error-correcting code.
arXiv Detail & Related papers (2020-02-27T19:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.