Exploring the Potential of ChatGPT in Automated Code Refinement: An
Empirical Study
- URL: http://arxiv.org/abs/2309.08221v1
- Date: Fri, 15 Sep 2023 07:41:33 GMT
- Title: Exploring the Potential of ChatGPT in Automated Code Refinement: An
Empirical Study
- Authors: Qi Guo (Tianjin University), Junming Cao (Fudan University), Xiaofei
Xie (Singapore Management University), Shangqing Liu (Nanyang Technological
University), Xiaohong Li (Tianjin University), Bihuan Chen (Fudan
University), Xin Peng (Fudan University)
- Abstract summary: ChatGPT, a cutting-edge language model, has demonstrated impressive performance in various natural language processing tasks.
We conduct the first empirical study to understand the capabilities of ChatGPT in code review tasks.
Our results show that ChatGPT achieves higher EM and BLEU scores of 22.78 and 76.44 respectively, while the state-of-the-art method achieves only 15.50 and 62.88 on a high-quality code review dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code review is an essential activity for ensuring the quality and
maintainability of software projects. However, it is a time-consuming and often
error-prone task that can significantly impact the development process.
Recently, ChatGPT, a cutting-edge language model, has demonstrated impressive
performance in various natural language processing tasks, suggesting its
potential to automate code review processes. However, it is still unclear how
well ChatGPT performs in code review tasks. To fill this gap, in this paper, we
conduct the first empirical study to understand the capabilities of ChatGPT in
code review tasks, specifically focusing on automated code refinement based on
given code reviews. To conduct the study, we select the existing benchmark
CodeReview and construct a new code review dataset with high quality. We use
CodeReviewer, a state-of-the-art code review tool, as a baseline for comparison
with ChatGPT. Our results show that ChatGPT outperforms CodeReviewer in code
refinement tasks. Specifically, our results show that ChatGPT achieves higher
EM and BLEU scores of 22.78 and 76.44 respectively, while the state-of-the-art
method achieves only 15.50 and 62.88 on a high-quality code review dataset. We
further identify the root causes for ChatGPT's underperformance and propose
several strategies to mitigate these challenges. Our study provides insights
into the potential of ChatGPT in automating the code review process, and
highlights the potential research directions.
Related papers
- Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
We explore ChatGPT's capabilities on 6 tasks involving the complete vulnerability management process with a large-scale dataset containing 70,346 samples.
One notable example is ChatGPT's proficiency in tasks like generating titles for software bug reports.
Our findings reveal the difficulties encountered by ChatGPT and shed light on promising future directions.
arXiv Detail & Related papers (2023-11-11T11:01:13Z) - Assessing the Promise and Pitfalls of ChatGPT for Automated Code
Generation [2.0400340435492272]
This paper presents a comprehensive evaluation of the code generation capabilities of ChatGPT, a prominent large language model.
A dataset of 131 code-generation prompts across 5 categories was curated to enable robust analysis.
Code solutions were generated by both ChatGPT and humans for all prompts, resulting in 262 code samples.
arXiv Detail & Related papers (2023-11-05T12:56:40Z) - No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation by ChatGPT [28.68768157452352]
This study examines the quality of code generation using ChatGPT.
We leverage 728 algorithm problems in five languages (i.e., C, C++, Java, Python, and JavaScript) and 18 CWEs with 54 code scenarios for the code generation task.
Our findings uncover potential issues and limitations that arise in the ChatGPT-based code generation.
arXiv Detail & Related papers (2023-08-09T10:01:09Z) - Refining ChatGPT-Generated Code: Characterizing and Mitigating Code
Quality Issues [17.7880460531813]
We systematically study the quality of 4,066 ChatGPT-generated code implemented in two popular programming languages.
We identify and characterize potential issues with the quality of ChatGPT-generated code.
We find that ChatGPT can partially address these challenges, improving code quality by more than 20%, but there are still limitations and opportunities for improvement.
arXiv Detail & Related papers (2023-07-24T08:14:22Z) - Unmasking the giant: A comprehensive evaluation of ChatGPT's proficiency in coding algorithms and data structures [0.6990493129893112]
We evaluate ChatGPT's ability to generate correct solutions to the problems fed to it, its code quality, and nature of run-time errors thrown by its code.
We look into patterns in the test cases passed in order to gain some insights into how wrong ChatGPT code is in these kinds of situations.
arXiv Detail & Related papers (2023-07-10T08:20:34Z) - Automatic Code Summarization via ChatGPT: How Far Are We? [10.692654700225411]
We evaluate ChatGPT on a widely-used Python dataset called CSN-Python.
In terms of BLEU and ROUGE-L, ChatGPT's code summarization performance is significantly worse than all three SOTA models.
Based on the findings, we outline several open challenges and opportunities in ChatGPT-based code summarization.
arXiv Detail & Related papers (2023-05-22T09:43:40Z) - ChatLog: Carefully Evaluating the Evolution of ChatGPT Across Time [54.18651663847874]
ChatGPT has achieved great success and can be considered to have acquired an infrastructural status.
Existing benchmarks encounter two challenges: (1) Disregard for periodical evaluation and (2) Lack of fine-grained features.
We construct ChatLog, an ever-updating dataset with large-scale records of diverse long-form ChatGPT responses for 21 NLP benchmarks from March, 2023 to now.
arXiv Detail & Related papers (2023-04-27T11:33:48Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
Large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP)
This paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources.
Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages.
arXiv Detail & Related papers (2023-04-12T05:08:52Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
We provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric.
Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments.
We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
arXiv Detail & Related papers (2023-03-07T16:57:20Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
We carry out an extensive technical evaluation of ChatGPT using 23 data sets covering 8 different common NLP application tasks.
We evaluate the multitask, multilingual and multi-modal aspects of ChatGPT based on these data sets and a newly designed multimodal dataset.
ChatGPT is 63.41% accurate on average in 10 different reasoning categories under logical reasoning, non-textual reasoning, and commonsense reasoning.
arXiv Detail & Related papers (2023-02-08T12:35:34Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
Large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot.
Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community.
It is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot.
arXiv Detail & Related papers (2023-02-08T09:44:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.