論文の概要: Edge Based Oriented Object Detection
- arxiv url: http://arxiv.org/abs/2309.08265v1
- Date: Fri, 15 Sep 2023 09:19:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 15:13:27.671029
- Title: Edge Based Oriented Object Detection
- Title(参考訳): エッジベース指向オブジェクト検出
- Authors: Jianghu Shen, Xiaojun Wu
- Abstract要約: 対象物の検出精度を高めるために,エッジ勾配に基づく一意な損失関数を提案する。
DOTAデータセットのmAP増加率は1.3%である。
- 参考スコア(独自算出の注目度): 8.075609633483248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of remote sensing, we often utilize oriented bounding boxes
(OBB) to bound the objects. This approach significantly reduces the overlap
among dense detection boxes and minimizes the inclusion of background content
within the bounding boxes. To enhance the detection accuracy of oriented
objects, we propose a unique loss function based on edge gradients, inspired by
the similarity measurement function used in template matching task. During this
process, we address the issues of non-differentiability of the function and the
semantic alignment between gradient vectors in ground truth (GT) boxes and
predicted boxes (PB). Experimental results show that our proposed loss function
achieves $0.6\%$ mAP improvement compared to the commonly used Smooth L1 loss
in the baseline algorithm. Additionally, we design an edge-based self-attention
module to encourage the detection network to focus more on the object edges.
Leveraging these two innovations, we achieve a mAP increase of 1.3% on the DOTA
dataset.
- Abstract(参考訳): リモートセンシングの分野では、オブジェクト指向バウンディングボックス(OBB)を使ってオブジェクトをバウンディングすることが多い。
このアプローチは、高密度検出ボックス間の重複を著しく低減し、バウンディングボックスにバックグラウンドコンテンツを含めることを最小化する。
オブジェクト指向物体の検出精度を高めるために,テンプレートマッチングタスクで使用される類似度測定関数に着想を得て,エッジ勾配に基づくユニークな損失関数を提案する。
この過程で,関数の非微分可能性の問題と,基底真理(GT)ボックスと予測ボックス(PB)における勾配ベクトル間の意味的アライメントに対処する。
実験の結果,提案した損失関数は,ベースラインアルゴリズムでよく用いられるSmooth L1損失と比較して0.6\%$ mAPの改善が得られた。
さらに,検出ネットワークが対象エッジにもっと集中するように,エッジベースのセルフアテンションモジュールを設計した。
これら2つのイノベーションを活用することで、DOTAデータセットでmAPが1.3%向上しました。
関連論文リスト
- Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
本研究では,Sparse Differential Directionality prior (SDD)フレームワークを提案する。
我々は、ターゲットの異なる方向特性を活用して、それらを背景と区別する。
さらに、サリエンシ・コヒーレンス・ストラテジーにより、目標検出性をさらに強化する。
近似交互最小化法(PAM)アルゴリズムは,提案したモデルを効率的に解く。
論文 参考訳(メタデータ) (2024-07-22T04:32:43Z) - PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
本稿では,オブジェクト指向物体検出のための最初の単一点ベース OBB 生成法である PointOBB を提案する。
PointOBBは、オリジナルビュー、リサイズビュー、ローテーション/フリップ(rot/flp)ビューの3つのユニークなビューの協調利用を通じて動作する。
DIOR-RとDOTA-v1.0データセットの実験結果は、PointOBBが有望な性能を達成することを示す。
論文 参考訳(メタデータ) (2023-11-23T15:51:50Z) - MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression [0.0]
本稿では,新しい境界ボックス類似度比較基準MPDIoUを提案する。
MPDIoU損失関数は、最先端のインスタンスセグメンテーション(YOLACT)やPASCAL VOC、MS COCO、IIIT5kで訓練されたオブジェクト検出(YOLOv7)モデルに適用される。
論文 参考訳(メタデータ) (2023-07-14T23:54:49Z) - OriCon3D: Effective 3D Object Detection using Orientation and Confidence [0.0]
1つの画像から3次元物体を検出するための高度な手法を提案する。
我々は、深層畳み込みニューラルネットワークに基づく3Dオブジェクト重み付け指向回帰パラダイムを用いる。
提案手法は, 3次元オブジェクトのポーズ決定の精度を大幅に向上し, ベースライン法を超越した。
論文 参考訳(メタデータ) (2023-04-27T19:52:47Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3Dは、Occlusion-Aware Pixel-Wise Aggregationネットワークである。
密集した風景深度と、奥行きのある箱残量と物の境界箱を共同で推定する。
メインカーのカテゴリーでは最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-11-02T14:19:13Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - ImpDet: Exploring Implicit Fields for 3D Object Detection [74.63774221984725]
我々は、境界ボックス回帰を暗黙の関数として見る新しい視点を導入する。
これは、Implicit DetectionまたはImpDetと呼ばれる提案されたフレームワークにつながります。
我々のImpDetは、異なる局所的な3次元空間の点に特定の値を割り当て、高品質な境界を生成することができる。
論文 参考訳(メタデータ) (2022-03-31T17:52:12Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。