Boosting Fair Classifier Generalization through Adaptive Priority Reweighing
- URL: http://arxiv.org/abs/2309.08375v3
- Date: Mon, 20 May 2024 13:03:02 GMT
- Title: Boosting Fair Classifier Generalization through Adaptive Priority Reweighing
- Authors: Zhihao Hu, Yiran Xu, Mengnan Du, Jindong Gu, Xinmei Tian, Fengxiang He,
- Abstract summary: A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
- Score: 59.801444556074394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing penetration of machine learning applications in critical decision-making areas, calls for algorithmic fairness are more prominent. Although there have been various modalities to improve algorithmic fairness through learning with fairness constraints, their performance does not generalize well in the test set. A performance-promising fair algorithm with better generalizability is needed. This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability. Most previous reweighing methods propose to assign a unified weight for each (sub)group. Rather, our method granularly models the distance from the sample predictions to the decision boundary. Our adaptive reweighing method prioritizes samples closer to the decision boundary and assigns a higher weight to improve the generalizability of fair classifiers. Extensive experiments are performed to validate the generalizability of our adaptive priority reweighing method for accuracy and fairness measures (i.e., equal opportunity, equalized odds, and demographic parity) in tabular benchmarks. We also highlight the performance of our method in improving the fairness of language and vision models. The code is available at https://github.com/che2198/APW.
Related papers
- SeWA: Selective Weight Average via Probabilistic Masking [51.015724517293236]
We show that only a few points are needed to achieve better and faster convergence.
We transform the discrete selection problem into a continuous subset optimization framework.
We derive the SeWA's stability bounds, which are sharper than that under both convex image checkpoints.
arXiv Detail & Related papers (2025-02-14T12:35:21Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification [12.986535715303331]
Category imbalance is one of the most popular and important issues in the domain of classification.
We propose a robust learning algorithm based on adaptive cost-sensitivity and recursion.
Experimental results show that the proposed general framework is superior to traditional methods in Accuracy, G-mean, Recall and F1-score.
arXiv Detail & Related papers (2024-03-13T09:43:14Z) - PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses [18.944561572423726]
We focus on the construction of aggregation sets (called bags in the literature) for event-level loss functions.
We propose the PriorBoost algorithm, which adaptively forms bags of samples that are increasingly homogeneous.
arXiv Detail & Related papers (2024-02-07T16:06:20Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Adaptive Experimentation at Scale: A Computational Framework for
Flexible Batches [7.390918770007728]
Motivated by practical instances involving a handful of reallocations in which outcomes are measured in batches, we develop an adaptive-driven experimentation framework.
Our main observation is that normal approximations, which are universal in statistical inference, can also guide the design of adaptive algorithms.
arXiv Detail & Related papers (2023-03-21T04:17:03Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Robust Sampling in Deep Learning [62.997667081978825]
Deep learning requires regularization mechanisms to reduce overfitting and improve generalization.
We address this problem by a new regularization method based on distributional robust optimization.
During the training, the selection of samples is done according to their accuracy in such a way that the worst performed samples are the ones that contribute the most in the optimization.
arXiv Detail & Related papers (2020-06-04T09:46:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.