PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
- URL: http://arxiv.org/abs/2402.04987v1
- Date: Wed, 7 Feb 2024 16:06:20 GMT
- Title: PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
- Authors: Adel Javanmard, Matthew Fahrbach, Vahab Mirrokni
- Abstract summary: We focus on the construction of aggregation sets (called bags in the literature) for event-level loss functions.
We propose the PriorBoost algorithm, which adaptively forms bags of samples that are increasingly homogeneous.
- Score: 18.944561572423726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work studies algorithms for learning from aggregate responses. We focus
on the construction of aggregation sets (called bags in the literature) for
event-level loss functions. We prove for linear regression and generalized
linear models (GLMs) that the optimal bagging problem reduces to
one-dimensional size-constrained $k$-means clustering. Further, we
theoretically quantify the advantage of using curated bags over random bags. We
then propose the PriorBoost algorithm, which adaptively forms bags of samples
that are increasingly homogeneous with respect to (unobserved) individual
responses to improve model quality. We study label differential privacy for
aggregate learning, and we also provide extensive experiments showing that
PriorBoost regularly achieves optimal model quality for event-level
predictions, in stark contrast to non-adaptive algorithms.
Related papers
- EnsIR: An Ensemble Algorithm for Image Restoration via Gaussian Mixture Models [70.60381055741391]
Image restoration challenges related to illposed problems, resulting in deviations between single model predictions and ground-truths.
Ensemble learning aims to address these deviations by combining the predictions of multiple base models.
We employ an expectation (EM)-based algorithm to estimate ensemble weights for prediction candidates.
Our algorithm is model-agnostic and training-free, allowing seamless integration and enhancement of various pre-trained image restoration models.
arXiv Detail & Related papers (2024-10-30T12:16:35Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - Adaptive Sparse Gaussian Process [0.0]
We propose the first adaptive sparse Gaussian Process (GP) able to address all these issues.
We first reformulate a variational sparse GP algorithm to make it adaptive through a forgetting factor.
We then propose updating a single inducing point of the sparse GP model together with the remaining model parameters every time a new sample arrives.
arXiv Detail & Related papers (2023-02-20T21:34:36Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - An Efficient Framework for Clustered Federated Learning [26.24231986590374]
We address the problem of federated learning (FL) where users are distributed into clusters.
We propose the Iterative Federated Clustering Algorithm (IFCA)
We show that our algorithm is efficient in non- partitioned problems such as neural networks.
arXiv Detail & Related papers (2020-06-07T08:48:59Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
We give the first relative-error algorithms for column subset selection, subspace approximation, projective clustering, and volume on turnstile streams that use space sublinear in $n$.
Our adaptive sampling procedure has a number of applications to various data summarization problems that either improve state-of-the-art or have only been previously studied in the more relaxed row-arrival model.
arXiv Detail & Related papers (2020-04-23T05:00:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.