論文の概要: PatFig: Generating Short and Long Captions for Patent Figures
- arxiv url: http://arxiv.org/abs/2309.08379v1
- Date: Fri, 15 Sep 2023 13:10:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 14:43:24.245584
- Title: PatFig: Generating Short and Long Captions for Patent Figures
- Title(参考訳): PatFig: 特許の短所と長所のキャプションを生成する
- Authors: Dana Aubakirova, Kim Gerdes, Lufei Liu
- Abstract要約: 本稿では,11,000以上の欧州特許出願から3万以上の特許を抽出した,新たな大規模特許フィギュアデータセットであるQatent PatFigを紹介する。
各図に対して、このデータセットは、短くて長いキャプション、参照数字、対応する用語、画像の構成要素間の相互作用を記述する最小限のクレームセットを提供する。
- 参考スコア(独自算出の注目度): 1.5768712539090313
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces Qatent PatFig, a novel large-scale patent figure
dataset comprising 30,000+ patent figures from over 11,000 European patent
applications. For each figure, this dataset provides short and long captions,
reference numerals, their corresponding terms, and the minimal claim set that
describes the interactions between the components of the image. To assess the
usability of the dataset, we finetune an LVLM model on Qatent PatFig to
generate short and long descriptions, and we investigate the effects of
incorporating various text-based cues at the prediction stage of the patent
figure captioning process.
- Abstract(参考訳): 本稿では,11,000以上の欧州特許出願から3万以上の特許を抽出した,新たな大規模特許フィギュアデータセットであるQatent PatFigを紹介する。
各図に対して、このデータセットは、短いキャプション、参照数字、対応する用語、および画像の構成要素間の相互作用を記述する最小限のクレームセットを提供する。
データセットのユーザビリティを評価するために,qatent patfigにlvlmモデルを適用し,短い記述と長い記述を生成し,特許図キャプションプロセスの予測段階で様々なテキストに基づくヒントを組み込む効果について検討する。
関連論文リスト
- Pap2Pat: Towards Automated Paper-to-Patent Drafting using Chunk-based Outline-guided Generation [13.242188189150987]
PAP2PATは、文書概要を含む1.8kの特許と特許のペアの新しい挑戦的なベンチマークである。
現在のオープンウェイト LLM とアウトライン誘導型ジェネレーションによる実験は,特許言語の本質的な反復性のために,論文からの情報を効果的に活用できるが,繰り返しに苦慮していることを示している。
論文 参考訳(メタデータ) (2024-10-09T15:52:48Z) - AuroraCap: Efficient, Performant Video Detailed Captioning and a New Benchmark [73.62572976072578]
大規模なマルチモーダルモデルに基づくビデオキャプタであるAuroraCapを提案する。
トークンマージ戦略を実装し、入力されたビジュアルトークンの数を減らす。
AuroraCapは、様々なビデオおよび画像キャプションベンチマークで優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-10-04T00:13:54Z) - DOCCI: Descriptions of Connected and Contrasting Images [58.377060316967864]
Connected and Contrasting Images (DOCCI) は、15k画像のための長い人間の注釈付き英語記述のデータセットである。
我々は、画像毎の包括的な記述を作成するよう、人間のアノテータに指示する。
DOCCIはテキスト・画像生成に有用なテストベッドであることを示す。
論文 参考訳(メタデータ) (2024-04-30T17:56:24Z) - Large Language Model Informed Patent Image Retrieval [0.0]
本稿では,特許画像特徴学習のための言語インフォームドな分散型マルチモーダルアプローチを提案する。
提案手法は, mAP +53.3%, Recall@10 +41.8%, MRR@10 +51.9%による画像に基づく特許検索において, 最先端ないし同等の性能を実現する。
論文 参考訳(メタデータ) (2024-04-30T08:45:16Z) - Connecting the Dots: Inferring Patent Phrase Similarity with Retrieved Phrase Graphs [18.86788223751979]
本稿では,2つの特許句間の意味的類似度を測定する特許フレーズ類似性推論タスクについて検討する。
本稿では,特許用語のグローバルな文脈情報を増幅するためのグラフ拡張手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T18:59:38Z) - Few-shot Action Recognition with Captioning Foundation Models [61.40271046233581]
CapFSARは、テキストを手動でアノテートすることなく、マルチモーダルモデルの知識を利用するフレームワークである。
Transformerをベースとしたビジュアルテキストアグリゲーションモジュールはさらに、モーダル時間間の補完情報を組み込むように設計されている。
複数の標準的な数ショットベンチマークの実験では、提案したCapFSARが既存の手法に対して好適に動作することを示した。
論文 参考訳(メタデータ) (2023-10-16T07:08:39Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPromptは、数発のテキスト分類タスクをテキストペア関連性推定タスクに書き換えることで、言語設計の難易度を緩和する。
広範に使われている3つのテキスト分類データセットを4つのショット・セッティングで実験する。
結果から,MetricPromptは,手動弁証法や自動弁証法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-15T06:51:35Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
ハーバードUSPTO特許データセット(HUPD)について紹介する。
450万件以上の特許文書があり、HUPDは同等のコーパスの2倍から3倍の大きさだ。
各アプリケーションのメタデータとすべてのテキストフィールドを提供することで、このデータセットは研究者が新しいNLPタスクセットを実行することを可能にする。
論文 参考訳(メタデータ) (2022-07-08T17:57:15Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Partiは、テキスト・ツー・イメージ生成をシーケンス・ツー・シーケンス・モデリング問題として扱う。
PartiはTransformerベースの画像トークンライザViT-VQGANを使用して、画像を離散トークンのシーケンスとしてエンコードする。
PartiPrompts (P2)は1600以上の英語のプロンプトの総合的なベンチマークである。
論文 参考訳(メタデータ) (2022-06-22T01:11:29Z) - Patent Sentiment Analysis to Highlight Patent Paragraphs [0.0]
特許文書が与えられた場合、異なるセマンティックアノテーションを識別することは興味深い研究の側面である。
手動の特許分析の過程で、より読みやすくするために、段落をマークして意味情報を認識することが実際である。
この作業は、セマンティック情報を自動的に強調する特許実践者を支援し、機械学習の適性を利用して持続的で効率的な特許分析を作成するのに役立つ。
論文 参考訳(メタデータ) (2021-11-06T13:28:29Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。