論文の概要: Learning by Self-Explaining
- arxiv url: http://arxiv.org/abs/2309.08395v3
- Date: Tue, 17 Sep 2024 16:24:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 22:50:44.605087
- Title: Learning by Self-Explaining
- Title(参考訳): 自己説明による学習
- Authors: Wolfgang Stammer, Felix Friedrich, David Steinmann, Manuel Brack, Hikaru Shindo, Kristian Kersting,
- Abstract要約: 我々は、自己説明による学習(LSX)と呼ばれる画像分類の文脈において、新しいワークフローを導入する。
LSXは、自己修復型AIと人間誘導型説明機械学習の側面を利用する。
本結果は,自己説明による学習による改善を,いくつかのレベルで示すものである。
- 参考スコア(独自算出の注目度): 23.420673675343266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much of explainable AI research treats explanations as a means for model inspection. Yet, this neglects findings from human psychology that describe the benefit of self-explanations in an agent's learning process. Motivated by this, we introduce a novel workflow in the context of image classification, termed Learning by Self-Explaining (LSX). LSX utilizes aspects of self-refining AI and human-guided explanatory machine learning. The underlying idea is that a learner model, in addition to optimizing for the original predictive task, is further optimized based on explanatory feedback from an internal critic model. Intuitively, a learner's explanations are considered "useful" if the internal critic can perform the same task given these explanations. We provide an overview of important components of LSX and, based on this, perform extensive experimental evaluations via three different example instantiations. Our results indicate improvements via Learning by Self-Explaining on several levels: in terms of model generalization, reducing the influence of confounding factors, and providing more task-relevant and faithful model explanations. Overall, our work provides evidence for the potential of self-explaining within the learning phase of an AI model.
- Abstract(参考訳): 説明可能なAI研究の多くは、モデル検査の手段として説明を扱う。
しかし、これはエージェントの学習過程における自己説明の利点を記述する人間の心理学からの発見を無視する。
そこで我々は,自己説明による学習(LSX)と呼ばれる画像分類の文脈において,新たなワークフローを導入する。
LSXは、自己修復型AIと人間誘導型説明機械学習の側面を利用する。
基礎となる考え方は、学習者が本来の予測タスクを最適化することに加えて、内部批判モデルからの説明的フィードバックに基づいてさらに最適化されることである。
直感的には、学習者の説明は、内部批判者がこれらの説明から同じタスクを遂行できるならば「有用」と見なされる。
本稿では,LSX の重要な構成要素について概説し,これに基づいて3つの異なる例のインスタンス化による広範囲な実験的評価を行う。
この結果から,モデル一般化の観点からの自己説明による学習による改善,共起要因の影響の低減,タスク関連および忠実なモデル説明の提供,などが示唆された。
全体として、我々の研究はAIモデルの学習段階における自己説明の可能性を示す証拠を提供する。
関連論文リスト
- CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
畳み込みモデルを用いた深層分類モデルによる説明文の要約の可能性について検討する。
実験と分析を通じて、モデル行動のより一貫性と信頼性のあるパターンを明らかにするために、説明を組み合わせることの意味を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-04-16T08:39:29Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
説明はユーザー体験を改善し、システムの欠陥を発見するのに役立つ。
本稿では,表現学習プロセスの透明性を向上させることによって,説明可能な新しい推薦モデルを提案する。
論文 参考訳(メタデータ) (2020-08-21T05:30:48Z) - The Grammar of Interactive Explanatory Model Analysis [7.812073412066698]
本稿では,異なる説明モデル解析(EMA)手法が相互にどのように補完するかを示す。
我々はIEMAの文法を形式化し、潜在的な人間モデル対話を記述する。
IEMAは、広く使われている人中心のオープンソースソフトウェアフレームワークで実装されている。
論文 参考訳(メタデータ) (2020-05-01T17:12:22Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。