A Spiking Binary Neuron -- Detector of Causal Links
- URL: http://arxiv.org/abs/2309.08476v1
- Date: Fri, 15 Sep 2023 15:34:17 GMT
- Title: A Spiking Binary Neuron -- Detector of Causal Links
- Authors: Mikhail Kiselev, Denis Larionov, Andrey Urusov
- Abstract summary: Causal relationship recognition is a fundamental operation in neural networks aimed at learning behavior, action planning, and inferring external world dynamics.
This research paper presents a novel approach to realize causal relationship recognition using a simple spiking binary neuron.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal relationship recognition is a fundamental operation in neural networks
aimed at learning behavior, action planning, and inferring external world
dynamics. This operation is particularly crucial for reinforcement learning
(RL). In the context of spiking neural networks (SNNs), events are represented
as spikes emitted by network neurons or input nodes. Detecting causal
relationships within these events is essential for effective RL implementation.
This research paper presents a novel approach to realize causal relationship
recognition using a simple spiking binary neuron. The proposed method leverages
specially designed synaptic plasticity rules, which are both straightforward
and efficient. Notably, our approach accounts for the temporal aspects of
detected causal links and accommodates the representation of spiking signals as
single spikes or tight spike sequences (bursts), as observed in biological
brains. Furthermore, this study places a strong emphasis on the
hardware-friendliness of the proposed models, ensuring their efficient
implementation on modern and future neuroprocessors. Being compared with
precise machine learning techniques, such as decision tree algorithms and
convolutional neural networks, our neuron demonstrates satisfactory accuracy
despite its simplicity. In conclusion, we introduce a multi-neuron structure
capable of operating in more complex environments with enhanced accuracy,
making it a promising candidate for the advancement of RL applications in SNNs.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - Biologically-Plausible Topology Improved Spiking Actor Network for Efficient Deep Reinforcement Learning [15.143466733327566]
Recent advances in neuroscience have unveiled that the human brain achieves efficient reward-based learning.
The success of Deep Reinforcement Learning (DRL) is largely attributed to utilizing Artificial Neural Networks (ANNs) as function approximators.
We propose a novel alternative for function approximator, the Biologically-Plausible Topology improved Spiking Actor Network (BPT-SAN)
arXiv Detail & Related papers (2024-03-29T13:25:19Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
We introduce a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks.
Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections.
Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data.
arXiv Detail & Related papers (2023-12-10T09:06:16Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
We introduce neural connectivity concepts emulating the axo-somatic and the axo-axonic synapses.
We demonstrate for the first time, that a biologically realistic implementation of a large-scale ASR model can yield competitive performance levels.
arXiv Detail & Related papers (2021-10-04T21:24:10Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
We propose a novel biologically inspired for artificial (ANNs) and spiking neural networks (SNNs)
GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network.
We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs.
arXiv Detail & Related papers (2021-04-23T13:50:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.