Neural Models of Task Adaptation: A Tutorial on Spiking Networks for Executive Control
- URL: http://arxiv.org/abs/2503.03784v1
- Date: Wed, 05 Mar 2025 00:44:34 GMT
- Title: Neural Models of Task Adaptation: A Tutorial on Spiking Networks for Executive Control
- Authors: Ashwin Viswanathan Kannan, Madhumitha Ganesan,
- Abstract summary: This tutorial presents a step-by-step approach to constructing a spiking neural network (SNN) that simulates task-switching dynamics.<n>The model incorporates biologically realistic features, including lateral inhibition, adaptive synaptic weights, and precise parameterization within physiologically relevant ranges.<n>By following this tutorial, researchers can develop and extend biologically inspired SNN models for studying cognitive processes and neural adaptation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding cognitive flexibility and task-switching mechanisms in neural systems requires biologically plausible computational models. This tutorial presents a step-by-step approach to constructing a spiking neural network (SNN) that simulates task-switching dynamics within the cognitive control network. The model incorporates biologically realistic features, including lateral inhibition, adaptive synaptic weights through unsupervised Spike Timing-Dependent Plasticity (STDP), and precise neuronal parameterization within physiologically relevant ranges. The SNN is implemented using Leaky Integrate-and-Fire (LIF) neurons, which represent excitatory (glutamatergic) and inhibitory (GABAergic) populations. We utilize two real-world datasets as tasks, demonstrating how the network learns and dynamically switches between them. Experimental design follows cognitive psychology paradigms to analyze neural adaptation, synaptic weight modifications, and emergent behaviors such as Long-Term Potentiation (LTP), Long-Term Depression (LTD), and Task-Set Reconfiguration (TSR). Through a series of structured experiments, this tutorial illustrates how variations in task-switching intervals affect performance and multitasking efficiency. The results align with empirically observed neuronal responses, offering insights into the computational underpinnings of executive function. By following this tutorial, researchers can develop and extend biologically inspired SNN models for studying cognitive processes and neural adaptation.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Context Gating in Spiking Neural Networks: Achieving Lifelong Learning through Integration of Local and Global Plasticity [20.589970453110208]
Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC)
We propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning.
Experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning.
arXiv Detail & Related papers (2024-06-04T01:35:35Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - A Spiking Binary Neuron -- Detector of Causal Links [0.0]
Causal relationship recognition is a fundamental operation in neural networks aimed at learning behavior, action planning, and inferring external world dynamics.
This research paper presents a novel approach to realize causal relationship recognition using a simple spiking binary neuron.
arXiv Detail & Related papers (2023-09-15T15:34:17Z) - Unsupervised Spiking Neural Network Model of Prefrontal Cortex to study
Task Switching with Synaptic deficiency [0.0]
We build a computational model of Prefrontal Cortex (PFC) using Spiking Neural Networks (SNN)
In this study, we use SNN's having parameters close to biologically plausible values and train the model using unsupervised Spike Timing Dependent Plasticity (STDP) learning rule.
arXiv Detail & Related papers (2023-05-23T05:59:54Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
We introduce a framework for learning the dynamics of synaptic plasticity and neuromodulated synaptic plasticity in Spiking Neural Networks (SNNs)
We show that SNNs augmented with differentiable plasticity are sufficient for solving a set of challenging temporal learning tasks.
These networks are also shown to be capable of producing locomotion on a high-dimensional robotic learning task.
arXiv Detail & Related papers (2021-06-04T19:29:07Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.