OccupancyDETR: Using DETR for Mixed Dense-sparse 3D Occupancy Prediction
- URL: http://arxiv.org/abs/2309.08504v3
- Date: Sat, 18 May 2024 13:41:35 GMT
- Title: OccupancyDETR: Using DETR for Mixed Dense-sparse 3D Occupancy Prediction
- Authors: Yupeng Jia, Jie He, Runze Chen, Fang Zhao, Haiyong Luo,
- Abstract summary: Visual-based 3D semantic occupancy perception is a key technology for robotics, including autonomous vehicles.
We propose a novel 3D semantic occupancy perception method, OccupancyDETR, which utilizes a DETR-like object detection, a mixed dense-sparse 3D occupancy decoder.
Our approach strikes a balance between efficiency and accuracy, achieving faster inference times, lower resource consumption, and improved performance for small object detection.
- Score: 10.87136340580404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual-based 3D semantic occupancy perception is a key technology for robotics, including autonomous vehicles, offering an enhanced understanding of the environment by 3D. This approach, however, typically requires more computational resources than BEV or 2D methods. We propose a novel 3D semantic occupancy perception method, OccupancyDETR, which utilizes a DETR-like object detection, a mixed dense-sparse 3D occupancy decoder. Our approach distinguishes between foreground and background within a scene. Initially, foreground objects are detected using the DETR-like object detection. Subsequently, queries for both foreground and background objects are fed into the mixed dense-sparse 3D occupancy decoder, performing upsampling in dense and sparse methods, respectively. Finally, a MaskFormer is utilized to infer the semantics of the background voxels. Our approach strikes a balance between efficiency and accuracy, achieving faster inference times, lower resource consumption, and improved performance for small object detection. We demonstrate the effectiveness of our proposed method on the SemanticKITTI dataset, showcasing an mIoU of 14 and a processing speed of 10 FPS, thereby presenting a promising solution for real-time 3D semantic occupancy perception.
Related papers
- SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object
Detection Algorithm [4.958840734249869]
This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification.
Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks.
arXiv Detail & Related papers (2022-01-12T07:11:18Z) - Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection [59.765645791588454]
Recently introduced RTS3D builds an efficient 4D Feature-Consistency Embedding space for the intermediate representation of object without depth supervision.
We propose a shape prior non-uniform sampling strategy that performs dense sampling in outer region and sparse sampling in inner region.
Our proposed method has 2.57% improvement on AP3d almost without extra network parameters.
arXiv Detail & Related papers (2021-06-18T09:14:55Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.