論文の概要: ICLEF: In-Context Learning with Expert Feedback for Explainable Style Transfer
- arxiv url: http://arxiv.org/abs/2309.08583v2
- Date: Mon, 17 Jun 2024 17:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 12:40:28.008892
- Title: ICLEF: In-Context Learning with Expert Feedback for Explainable Style Transfer
- Title(参考訳): ICLEF: 説明可能なスタイル転送のためのエキスパートフィードバックによるインコンテキスト学習
- Authors: Arkadiy Saakyan, Smaranda Muresan,
- Abstract要約: ICLEFは、新しい人間とAIのコラボレーションアプローチである。
提案手法は,高品質な合成説明可能なスタイル転送データセットの生成につながることを示す。
- 参考スコア(独自算出の注目度): 21.395843756928453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While state-of-the-art large language models (LLMs) can excel at adapting text from one style to another, current work does not address the explainability of style transfer models. Recent work has explored generating textual explanations from larger teacher models and distilling them into smaller student models. One challenge with such approach is that LLM outputs may contain errors that require expertise to correct, but gathering and incorporating expert feedback is difficult due to cost and availability. To address this challenge, we propose ICLEF, a novel human-AI collaboration approach to model distillation that incorporates scarce expert human feedback by combining in-context learning and model self-critique. We show that our method leads to generation of high-quality synthetic explainable style transfer datasets for formality (e-GYAFC) and subjective bias (e-WNC). Via automatic and human evaluation, we show that specialized student models fine-tuned on our datasets outperform generalist teacher models on the explainable style transfer task in one-shot settings, and perform competitively compared to few-shot teacher models, highlighting the quality of the data and the role of expert feedback. In an extrinsic task of authorship attribution, we show that explanations generated by smaller models fine-tuned on e-GYAFC are more predictive of authorship than explanations generated by few-shot teacher models.
- Abstract(参考訳): 最先端の大規模言語モデル(LLM)は、あるスタイルから別のスタイルへのテキストの適応に優れるが、現在の作業はスタイル転送モデルの説明可能性に対処するものではない。
近年の研究では、より大きな教師モデルからテキストによる説明を作成し、それをより小さな学生モデルに蒸留する方法が検討されている。
このアプローチの課題の1つは、LCM出力には、修正する専門知識を必要とするエラーが含まれているかもしれないが、コストと可用性のために専門家のフィードバックを集め、取り入れることは困難である。
この課題に対処するため,本論文では,文脈内学習と自己批判を組み合わせ,少ない専門家によるフィードバックを取り入れた,新しい人間-AI協調型蒸留手法であるICLEFを提案する。
提案手法は,形式性(e-GYAFC)と主観的バイアス(e-WNC)のための高品質な合成説明可能なスタイル転送データセットを生成する。
自動的, 人的評価により, 一般教師モデルでは, 単発で説明可能なスタイル伝達タスクにおいて, 教師モデルよりも優れ, 教師モデルと比較し, データの質と専門家のフィードバックの役割を強調した。
本研究は,e-GYAFCで微調整された小型モデルによる説明は,教師による説明よりも著者の予測性が高いことを示す。
関連論文リスト
- Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
大規模言語モデル(LLM)は、さまざまな機械学習(ML)タスクにまたがる例外的な機能を示している。
これらのモデルは、特に不完全な知識を持つ領域において幻覚を生み出すことができる。
幻覚を緩和し,教師モデルと学生モデルの両方のパフォーマンスを向上させるために設計された,革新的なフレームワークであるDualCheckerを紹介する。
論文 参考訳(メタデータ) (2024-08-22T12:04:04Z) - Self-Regulated Data-Free Knowledge Amalgamation for Text Classification [9.169836450935724]
そこで我々は,複数の教師モデルから学習できる軽量な学生ネットワークを構築した。
そこで本研究では,各教師に適したテキストデータを生成するモデリングフレームワークSTRATANETを提案する。
本手法は,ラベルやドメインの異なる3つのベンチマークテキスト分類データセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-16T21:13:30Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Constructive Large Language Models Alignment with Diverse Feedback [76.9578950893839]
本稿では,大規模言語モデルのアライメント向上のための新しい手法として,コンストラクティブ・ディバース・フィードバック(CDF)を導入する。
我々は,簡単な問題に対する批判的フィードバック,中級問題に対する改善的フィードバック,難題に対する選好的フィードバックを利用する。
このような多様なフィードバックでモデルをトレーニングすることで、トレーニングデータの少ない使用でアライメント性能を向上させることができる。
論文 参考訳(メタデータ) (2023-10-10T09:20:14Z) - Fine-grained Text Style Transfer with Diffusion-Based Language Models [50.02698074338317]
微細テキストスタイル転送の標準ベンチマークであるStylePTBデータセットを用いて拡散モデルを構築した。
本モデルでは, 個人と作曲の両方において, 最先端の性能を達成できた。
論文 参考訳(メタデータ) (2023-05-31T02:51:26Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
大規模なニューラルモデル(トランスフォーマーなど)は、情報検索(IR)のための最先端のパフォーマンスを達成する
本研究では,大規模教師モデルで学習したクエリとドキュメント間の相対的幾何を利用した新しい蒸留手法を提案する。
提案手法は, 両エンコーダ (DE) とクロスエンコーダ (CE) の2種類の教師モデルから, 95~97%の教師性能を維持できる1/10の非対称な学生への蒸留に成功した。
論文 参考訳(メタデータ) (2023-01-27T22:04:37Z) - Foundation models in brief: A historical, socio-technical focus [2.5991265608180396]
ディープラーニングをスケールアップすることで、将来のAI開発には、ファンデーションモデルが破壊的になる可能性がある。
モデルは自然言語処理やコンピュータビジョンといった分野における様々なタスクにおいて最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-12-17T22:11:33Z) - Non-Parallel Text Style Transfer with Self-Parallel Supervision [19.441780035577352]
大規模言語モデルに基づく新しいテキストスタイル転送フレームワークであるLaMerを提案する。
LaMerはまず、シーングラフで非並列データセットのほぼ並列表現をマイニングし、続いてMLEトレーニングを使用し、続いて模倣学習の改良を行い、データ内の本質的な並列性を活用する。
2つのベンチマークタスク(センチメントとフォーマル性転送)と、新たに提案された課題タスク(政治的スタンス転送)において、我々のモデルは、転送精度、コンテンツ保存および流速の質的な進歩を達成する。
論文 参考訳(メタデータ) (2022-04-18T01:38:35Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Model Uncertainty-Aware Knowledge Amalgamation for Pre-Trained Language
Models [37.88287077119201]
PLMのための新しいモデル再利用パラダイムであるKnowledge Amalgamation(KA)を提案する。
KAは、人間のアノテーションを使用せずに、異なる分類問題に特化している異なる教師-PLMの知識を、汎用的な学生モデルにマージすることを目的としている。
実験の結果,MUKAはベンチマークデータセットのベースラインよりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2021-12-14T12:26:24Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。