論文の概要: A More Secure Split: Enhancing the Security of Privacy-Preserving Split Learning
- arxiv url: http://arxiv.org/abs/2309.08697v1
- Date: Fri, 15 Sep 2023 18:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 04:30:16.399449
- Title: A More Secure Split: Enhancing the Security of Privacy-Preserving Split Learning
- Title(参考訳): よりセキュアなスプリット:プライバシ保護型スプリット学習のセキュリティを強化する
- Authors: Tanveer Khan, Khoa Nguyen, Antonis Michalas,
- Abstract要約: Split Learning(SL)は、参加者がクライアントが生データを共有せずに機械学習モデルをトレーニングすることを可能にする、新たなコラボレーティブな学習テクニックである。
以前の研究は、アクティベーションマップ(AM)の再構築がクライアントデータのプライバシー漏洩をもたらすことを示した。
本稿では,U字型SLをベースとしたプロトコルを構築し,同義的に暗号化されたデータを操作することにより,従来の作業を改善する。
- 参考スコア(独自算出の注目度): 2.853180143237022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Split learning (SL) is a new collaborative learning technique that allows participants, e.g. a client and a server, to train machine learning models without the client sharing raw data. In this setting, the client initially applies its part of the machine learning model on the raw data to generate Activation Maps (AMs) and then sends them to the server to continue the training process. Previous works in the field demonstrated that reconstructing AMs could result in privacy leakage of client data. In addition to that, existing mitigation techniques that overcome the privacy leakage of SL prove to be significantly worse in terms of accuracy. In this paper, we improve upon previous works by constructing a protocol based on U-shaped SL that can operate on homomorphically encrypted data. More precisely, in our approach, the client applies homomorphic encryption on the AMs before sending them to the server, thus protecting user privacy. This is an important improvement that reduces privacy leakage in comparison to other SL-based works. Finally, our results show that, with the optimum set of parameters, training with HE data in the U-shaped SL setting only reduces accuracy by 2.65% compared to training on plaintext. In addition, raw training data privacy is preserved.
- Abstract(参考訳): Split Learning(SL)は、クライアントとサーバといった参加者が、クライアントが生データを共有せずに機械学習モデルをトレーニングすることを可能にする、新たなコラボレーティブな学習テクニックである。
この設定では、クライアントは最初、生データに機械学習モデルの一部を適用して Activation Maps (AM) を生成し、その後、トレーニングプロセスを継続するためにサーバに送信する。
この分野での以前の研究は、AMの再構築がクライアントデータのプライバシー漏洩につながることを実証した。
それに加えて、SLのプライバシー漏洩を克服する既存の緩和技術は、精度の点で著しく悪化している。
本稿では,U字型SLをベースとしたプロトコルを構築し,同義的に暗号化されたデータを操作することにより,従来の作業を改善する。
より正確には、当社のアプローチでは、クライアントはAMに同型暗号化を適用してサーバに送信し、ユーザのプライバシを保護する。
これは、他のSLベースの作業と比べてプライバシーの漏洩を減らす重要な改善である。
最後に, パラメータの最適セットを用いて, U字型SLにおけるHEデータを用いたトレーニングは, 平文でのトレーニングに比べて2.65%の精度しか低下しないことを示した。
さらに、生のトレーニングデータプライバシが保存される。
関連論文リスト
- KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server [48.04903443425111]
大規模言語モデル (LLM) は、多くの当事者が自身のプライベートデータでLPMを微調整できるようにする。
置換のために合成データを利用するような既存のソリューションは、同時にパフォーマンスを改善し、プライバシを保存するのに苦労している。
我々は、合成データ品質を高め、プライバシを確保しつつモデル性能を向上させる新しいクライアントサーバフレームワークであるKnowledgeSGを提案する。
論文 参考訳(メタデータ) (2024-10-08T06:42:28Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Make Split, not Hijack: Preventing Feature-Space Hijacking Attacks in Split Learning [1.6822770693792823]
クライアントデータのプライバシを確保するために,Split Learning(SL)とFunction Secret Sharing(FSS)を組み合わせたハイブリッドアプローチを導入する。
我々のプロトコルは有望な結果をもたらし、SLを使わずに通信オーバヘッドを2倍以上削減し、FSSと同じモデルと比較して訓練時間を7倍以上削減する。
論文 参考訳(メタデータ) (2024-04-14T14:14:31Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Enhancing Accuracy-Privacy Trade-off in Differentially Private Split Learning [2.2676798389997863]
Split Learning(SL)は、クライアントサーバ間で詳細なモデルを分散し、プライベートデータをローカルに保持することで、ユーザのデータプライバシを保護することを目的としている。
最近提案されたモデル反転攻撃は、スマッシュされたデータから元のデータを復元することができる。
ディファレンシャルプライバシ(DP)を採用する戦略では、スマッシュされたデータをある程度の精度の損失を犠牲にして保護する。
論文 参考訳(メタデータ) (2023-10-22T22:45:13Z) - Love or Hate? Share or Split? Privacy-Preserving Training Using Split
Learning and Homomorphic Encryption [47.86010265348072]
Split Learning(SL)は、参加者がクライアントが生データを共有せずに機械学習モデルをトレーニングすることを可能にする、新たなコラボレーティブな学習テクニックである。
以前の研究は、アクティベーションマップの再構築がクライアントデータのプライバシー漏洩につながることを示した。
本稿では,U字型SLをベースとしたプロトコルを構築し,同義的に暗号化されたデータを操作することにより,従来の作業を改善する。
論文 参考訳(メタデータ) (2023-09-19T10:56:08Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Split Without a Leak: Reducing Privacy Leakage in Split Learning [3.2066885499201176]
スプリットラーニング(SL)とホモモルフィック暗号化(HE)を用いたハイブリッド手法を提案する。
MIT-BIH データセットでは,SL と HE を用いたハイブリッド手法により,訓練時間(約6倍)が短縮され,通信オーバーヘッド(ほぼ160倍)が他の HE ベースの手法に比べて大幅に低減される。
論文 参考訳(メタデータ) (2023-08-30T06:28:42Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Split Ways: Privacy-Preserving Training of Encrypted Data Using Split
Learning [6.916134299626706]
Split Learning(SL)は、参加者がクライアントが生データを共有せずに機械学習モデルをトレーニングできる、新たなコラボレーティブ学習技術である。
以前の研究は、アクティベーションマップの再構築がクライアントデータのプライバシー漏洩につながることを示した。
本稿では,U字型SLをベースとしたプロトコルを構築し,同義的に暗号化されたデータを操作することにより,従来の作業を改善する。
論文 参考訳(メタデータ) (2023-01-20T19:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。