No Imputation Needed: A Switch Approach to Irregularly Sampled Time Series
- URL: http://arxiv.org/abs/2309.08698v2
- Date: Mon, 19 Aug 2024 18:51:38 GMT
- Title: No Imputation Needed: A Switch Approach to Irregularly Sampled Time Series
- Authors: Rohit Agarwal, Aman Sinha, Ayan Vishwakarma, Xavier Coubez, Marianne Clausel, Mathieu Constant, Alexander Horsch, Dilip K. Prasad,
- Abstract summary: We present SLAN (Switch LSTM Aggregate Network), which utilizes a group of LSTMs to model irregularly-sampled time series (ISTS) without imputation.
SLAN exploits the irregularity information to explicitly capture each sensor's local summary and maintains a global summary state throughout the observational period.
We demonstrate the efficacy of SLAN on two public datasets, namely, MIMIC-III, and Physionet 2012.
- Score: 41.387374646018344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling irregularly-sampled time series (ISTS) is challenging because of missing values. Most existing methods focus on handling ISTS by converting irregularly sampled data into regularly sampled data via imputation. These models assume an underlying missing mechanism, which may lead to unwanted bias and sub-optimal performance. We present SLAN (Switch LSTM Aggregate Network), which utilizes a group of LSTMs to model ISTS without imputation, eliminating the assumption of any underlying process. It dynamically adapts its architecture on the fly based on the measured sensors using switches. SLAN exploits the irregularity information to explicitly capture each sensor's local summary and maintains a global summary state throughout the observational period. We demonstrate the efficacy of SLAN on two public datasets, namely, MIMIC-III, and Physionet 2012.
Related papers
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - TSI-GAN: Unsupervised Time Series Anomaly Detection using Convolutional
Cycle-Consistent Generative Adversarial Networks [2.4469484645516837]
Anomaly detection is widely used in network intrusion detection, autonomous driving, medical diagnosis, credit card frauds, etc.
This paper proposes TSI-GAN, an unsupervised anomaly detection model for time-series that can learn complex temporal patterns automatically.
We evaluate TSI-GAN using 250 well-curated and harder-than-usual datasets and compare with 8 state-of-the-art baseline methods.
arXiv Detail & Related papers (2023-03-22T23:24:47Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
We present a simple yet novel time series imputation technique with the goal of constructing an irregular time series that is uniform across every sample in a data set.
We fix a grid defined by the midpoints of non-overlapping bins (dubbed "slices") of observation times and ensure that each sample has values for all of the features at that given time.
This allows one to both impute fully missing observations to allow uniform time series classification across the entire data and, in special cases, to impute individually missing features.
arXiv Detail & Related papers (2022-01-14T19:23:24Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Unsupervised Online Anomaly Detection On Irregularly Sampled Or Missing
Valued Time-Series Data Using LSTM Networks [0.0]
We study anomaly detection and introduce an algorithm that processes variable length, irregularly sampled sequences or sequences with missing values.
Our algorithm is fully unsupervised, however, can be readily extended to supervised or semisupervised cases.
arXiv Detail & Related papers (2020-05-25T09:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.