STING: Self-attention based Time-series Imputation Networks using GAN
- URL: http://arxiv.org/abs/2209.10801v1
- Date: Thu, 22 Sep 2022 06:06:56 GMT
- Title: STING: Self-attention based Time-series Imputation Networks using GAN
- Authors: Eunkyu Oh, Taehun Kim, Yunhu Ji, Sushil Khyalia
- Abstract summary: STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
- Score: 4.052758394413726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series data are ubiquitous in real-world applications. However, one of
the most common problems is that the time series data could have missing values
by the inherent nature of the data collection process. So imputing missing
values from multivariate (correlated) time series data is imperative to improve
a prediction performance while making an accurate data-driven decision.
Conventional works for imputation simply delete missing values or fill them
based on mean/zero. Although recent works based on deep neural networks have
shown remarkable results, they still have a limitation to capture the complex
generation process of the multivariate time series. In this paper, we propose a
novel imputation method for multivariate time series data, called STING
(Self-attention based Time-series Imputation Networks using GAN). We take
advantage of generative adversarial networks and bidirectional recurrent neural
networks to learn latent representations of the time series. In addition, we
introduce a novel attention mechanism to capture the weighted correlations of
the whole sequence and avoid potential bias brought by unrelated ones.
Experimental results on three real-world datasets demonstrate that STING
outperforms the existing state-of-the-art methods in terms of imputation
accuracy as well as downstream tasks with the imputed values therein.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Continuous-time Autoencoders for Regular and Irregular Time Series Imputation [21.25279298572273]
Time series imputation is one of the most fundamental tasks for time series.
Recent self-attention-based methods show the state-of-the-art imputation performance.
It has been overlooked for a long time to design an imputation method based on continuous-time recurrent neural networks.
arXiv Detail & Related papers (2023-12-27T14:13:42Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
Time series data imputation is a well-studied problem with different categories of methods.
Time series methods based on deep learning have made progress with the usage of models like RNN.
We will review and discuss their model architectures, their pros and cons as well as their effects to show the development of the time series imputation methods.
arXiv Detail & Related papers (2020-11-23T11:57:27Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Neural ODEs for Informative Missingness in Multivariate Time Series [0.7233897166339269]
Practical applications, e.g., sensor data, healthcare, weather, generates data that is in truth continuous in time.
Deep learning model called GRU-D is one early attempt to address informative missingness in time series data.
New family of neural networks called Neural ODEs are natural and efficient for processing time series data which is continuous in time.
arXiv Detail & Related papers (2020-05-20T00:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.