論文の概要: GCL: Gradient-Guided Contrastive Learning for Medical Image Segmentation
with Multi-Perspective Meta Labels
- arxiv url: http://arxiv.org/abs/2309.08888v1
- Date: Sat, 16 Sep 2023 05:56:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 18:42:27.138946
- Title: GCL: Gradient-Guided Contrastive Learning for Medical Image Segmentation
with Multi-Perspective Meta Labels
- Title(参考訳): gcl:マルチパースペクティブメタラベルを用いた医用画像分割のための勾配誘導型コントラスト学習
- Authors: Yixuan Wu, Jintai Chen, Jiahuan Yan, Yiheng Zhu, Danny Z. Chen, Jian
Wu
- Abstract要約: 医療画像のシナリオでは、準備済みのメタラベルは本質的に画像間の意味的関係を明らかにする。
本論文では,事前学習したモデルにより,より高レベルな意味認識能力が得られるように,多視点メタラベルを統一する勾配誘導手法を提案する。
4つの医用画像セグメンテーションデータセットの実験により,新たな手法であるGCLが得られたことが確認された。(1)情報表現を学習し,限られたラベルでセグメンテーション性能を大幅に向上させ,(2)分布外データセットに対する有望な一般化性を示す。
- 参考スコア(独自算出の注目度): 22.515761041939914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since annotating medical images for segmentation tasks commonly incurs
expensive costs, it is highly desirable to design an annotation-efficient
method to alleviate the annotation burden. Recently, contrastive learning has
exhibited a great potential in learning robust representations to boost
downstream tasks with limited labels. In medical imaging scenarios, ready-made
meta labels (i.e., specific attribute information of medical images) inherently
reveal semantic relationships among images, which have been used to define
positive pairs in previous work. However, the multi-perspective semantics
revealed by various meta labels are usually incompatible and can incur
intractable "semantic contradiction" when combining different meta labels. In
this paper, we tackle the issue of "semantic contradiction" in a
gradient-guided manner using our proposed Gradient Mitigator method, which
systematically unifies multi-perspective meta labels to enable a pre-trained
model to attain a better high-level semantic recognition ability. Moreover, we
emphasize that the fine-grained discrimination ability is vital for
segmentation-oriented pre-training, and develop a novel method called Gradient
Filter to dynamically screen pixel pairs with the most discriminating power
based on the magnitude of gradients. Comprehensive experiments on four medical
image segmentation datasets verify that our new method GCL: (1) learns
informative image representations and considerably boosts segmentation
performance with limited labels, and (2) shows promising generalizability on
out-of-distribution datasets.
- Abstract(参考訳): セグメンテーション作業における医用画像の注釈付けは費用がかかるため,アノテーションの負担を軽減するためのアノテーション効率の高い手法を設計することが望ましい。
近年、コントラスト学習は、限られたラベルで下流タスクを増強する堅牢な表現を学習する大きな可能性を示している。
医療画像のシナリオでは、既製のメタラベル(すなわち医療画像の特定の属性情報)が本質的に画像間の意味的関係を明らかにする。
しかし、様々なメタラベルによって明らかにされるマルチパースペクティブセマンティクスは、通常互換性がなく、異なるメタラベルを組み合わせると、難解な「意味的矛盾」を引き起こす可能性がある。
本稿では,多視点メタラベルを体系的に統一し,事前学習モデルによりより高レベルなセマンティック認識能力を実現するグラディエント・ミティゲータ法を用いて,勾配誘導方式による「意味矛盾」の問題に取り組む。
さらに,セグメンテーション指向の事前学習にはきめ細かい識別能力が不可欠であることを強調し,グラディエントフィルタと呼ばれる新しい手法を開発し,勾配の大きさに基づいて最も識別力の高い画素対を動的にスクリーニングする。
4つの医用画像セグメンテーションデータセットに関する包括的実験により,(1)情報的な画像表現を学習し,限定ラベルによるセグメンテーション性能を著しく向上させ,(2)分布外データセットに有望な一般化性を示す。
関連論文リスト
- ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
マルチラベル画像分類は、コンピュータビジョンや医用画像など、多くの領域において難しい課題である。
最近の進歩は、グラフベースとトランスフォーマーベースのメソッドを導入し、パフォーマンスを改善し、ラベルの依存関係をキャプチャしている。
本稿では,これらの課題に対処する新しいフレームワークである確率的多ラベルコントラスト学習(ProbMCL)を提案する。
論文 参考訳(メタデータ) (2024-01-02T22:15:20Z) - DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
with Limited Annotations [79.433122872973]
低ラベル体制における多ラベル画像認識は、大きな課題と実践的重要性の課題である。
我々は、何百万もの補助的な画像テキストペアで事前訓練されたテキストと視覚的特徴の強力なアライメントを活用する。
Evidence-guided Dual Context Optimization (DualCoOp++) という,効率的かつ効果的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-08-03T17:33:20Z) - Semantic Contrastive Bootstrapping for Single-positive Multi-label
Recognition [36.3636416735057]
本研究では,意味的コントラスト型ブートストラップ法(Scob)を用いて,オブジェクト間の関係を徐々に回復する手法を提案する。
次に、アイコン的オブジェクトレベルの表現を抽出する再帰的セマンティックマスク変換器を提案する。
大規模な実験結果から,提案手法が最先端のモデルを超えていることが示唆された。
論文 参考訳(メタデータ) (2023-07-15T01:59:53Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Semi-supervised Contrastive Learning for Label-efficient Medical Image
Segmentation [11.935891325600952]
そこで本研究では,限定的な画素単位のアノテーションを利用して,同じラベルの画素を埋め込み空間に集めるために,教師付き局所的コントラスト損失を提案する。
ラベル付きデータの量が異なるため、我々の手法は、最先端のコントラストベースの手法や他の半教師付き学習技術よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-09-15T16:23:48Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
限られたラベルを持つ医用画像セグメンテーションにおける半教師あり学習の性能向上を目指す。
我々は、ラベルのない画像に対照的な損失を与えることによって、特徴レベルで潜在表現を直接学習する。
我々はMRIとCTのセグメンテーションデータセットの実験を行い、提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。