論文の概要: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object
Detection
- arxiv url: http://arxiv.org/abs/2309.08932v1
- Date: Sat, 16 Sep 2023 09:18:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 18:33:50.982251
- Title: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object
Detection
- Title(参考訳): 3次元物体検出のための意味認識型LiDAR専用擬似点雲生成
- Authors: Tiago Cortinhal, Idriss Gouigah, Eren Erdal Aksoy
- Abstract要約: 近年の進歩は擬似LiDAR、すなわち合成高密度点雲を導入し、カメラなどの追加のモダリティを使って3Dオブジェクト検出を強化している。
我々は,LiDARセンサとシーンセマンティクスに頼って,密度の高い擬似点雲で生スキャンを増強する,新しいLiDAR専用フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.7234862895932991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although LiDAR sensors are crucial for autonomous systems due to providing
precise depth information, they struggle with capturing fine object details,
especially at a distance, due to sparse and non-uniform data. Recent advances
introduced pseudo-LiDAR, i.e., synthetic dense point clouds, using additional
modalities such as cameras to enhance 3D object detection. We present a novel
LiDAR-only framework that augments raw scans with denser pseudo point clouds by
solely relying on LiDAR sensors and scene semantics, omitting the need for
cameras. Our framework first utilizes a segmentation model to extract scene
semantics from raw point clouds, and then employs a multi-modal domain
translator to generate synthetic image segments and depth cues without real
cameras. This yields a dense pseudo point cloud enriched with semantic
information. We also introduce a new semantically guided projection method,
which enhances detection performance by retaining only relevant pseudo points.
We applied our framework to different advanced 3D object detection methods and
reported up to 2.9% performance upgrade. We also obtained comparable results on
the KITTI 3D object detection dataset, in contrast to other state-of-the-art
LiDAR-only detectors.
- Abstract(参考訳): lidarセンサーは、正確な深度情報を提供するため、自律システムにとって重要であるが、狭く不均一なデータのために、細かな物体の詳細を、特に遠距離で捉えるのに苦労している。
近年の進歩は擬似LiDAR、すなわち合成高密度点雲を導入し、カメラなどの追加のモダリティを使って3Dオブジェクト検出を強化している。
本稿では,lidarセンサとシーンセマンティクスのみを頼りにして,より密集した疑似点雲によるrawスキャンを強化する,新しいlidar専用フレームワークを提案する。
筆者らはまず,シーンセグメンテーションモデルを用いて生の点雲からシーンセグメンテーションを抽出し,さらにマルチモーダル領域トランスレータを用いて合成画像セグメントと深度キューを生成する。
これにより、意味情報に富んだ密接な疑似点雲が生まれる。
また,関連する疑似点のみを保持することで検出性能を向上させる新しい意味的誘導投影法を提案する。
このフレームワークを様々な高度な3Dオブジェクト検出手法に適用し、2.9%の性能向上を報告した。
我々はまた、他の最先端LiDAR専用検出器と対照的に、KITTI 3Dオブジェクト検出データセットで同等の結果を得た。
関連論文リスト
- Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
2D画像特徴を融合させてLiDARポイントクラウドデータを再構成する新しいフレームワークであるLiDAR-Camera Augmentation Network (LCANet)を提案する。
LCANetは、画像特徴を3D空間に投影し、意味情報をポイントクラウドデータに統合することで、LiDARセンサーからのデータを融合する。
この融合は、しばしばスパースポイントで表される長距離物体の検出におけるLiDARの弱点を効果的に補う。
論文 参考訳(メタデータ) (2024-09-23T13:03:31Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - VirtualPainting: Addressing Sparsity with Virtual Points and
Distance-Aware Data Augmentation for 3D Object Detection [3.5259183508202976]
本稿では,カメラ画像を用いた仮想LiDAR点の生成を含む革新的なアプローチを提案する。
また、画像ベースセグメンテーションネットワークから得られる意味ラベルを用いて、これらの仮想点を強化する。
このアプローチは、様々な3Dフレームワークと2Dセマンティックセグメンテーションメソッドにシームレスに統合できる汎用的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-26T18:03:05Z) - ImLiDAR: Cross-Sensor Dynamic Message Propagation Network for 3D Object
Detection [20.44294678711783]
我々は,カメラ画像とLiDAR点雲のマルチスケール特徴を段階的に融合させることにより,センサ間差を狭める新しい3ODパラダイムであるImLiDARを提案する。
まず,マルチスケール画像とポイント特徴の最良の組み合わせを目的とした,クロスセンサ動的メッセージ伝搬モジュールを提案する。
第二に、効率的なセットベース検出器を設計できるような、直接セット予測問題を提起する。
論文 参考訳(メタデータ) (2022-11-17T13:31:23Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
本稿では,LiDAR 画像検出器に追従する特徴や応答をシミュレートすることで,単一モダリティ (LiDAR) 3次元物体検出器を高速化する新しい手法を提案する。
このアプローチでは、単一モダリティ検出器をトレーニングする場合のみ、LiDARイメージデータを必要とし、十分にトレーニングされた場合には、推論時にのみLiDARデータが必要である。
nuScenesデータセットの実験結果から,本手法はSOTA LiDARのみの3D検出器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-06-30T01:44:30Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
多くの現実世界の応用において、大量生産されたロボットや車両が使用するLiDARポイントは通常、大規模な公開データセットよりもビームが少ない。
異なるLiDARビームによって誘導される領域ギャップをブリッジして3次元物体検出を行うLiDAR蒸留法を提案する。
論文 参考訳(メタデータ) (2022-03-28T17:59:02Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
我々は、点雲をアンカーフリーで検出する新しい1段3次元検出器を開発した。
ボクセルをベースとしたスパース3D特徴量からスパース2D特徴量マップに変換することでこれを克服する。
検出信頼度スコアとバウンディングボックス回帰の精度との相関性を改善するために,IoUに基づく検出信頼度再校正手法を提案する。
論文 参考訳(メタデータ) (2021-08-08T13:42:13Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
本稿では,3次元関心領域(RoI)の集合を点雲から対応する画像の2次元ロIに投影することで,新しい融合アルゴリズムを提案する。
提案手法は,KITTI 3Dオブジェクト検出課題ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2020-09-09T20:23:27Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
本稿では,3次元検出器が境界を意識して点雲の最も密集した領域に焦点を合わせるのを支援する普遍モジュールを提案する。
KITTIデータセットの実験により、DENFIはベースライン単段検出器の性能を著しく改善することが示された。
論文 参考訳(メタデータ) (2020-04-01T01:21:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。