論文の概要: Empowering In-Browser Deep Learning Inference on Edge Devices with Just-in-Time Kernel Optimizations
- arxiv url: http://arxiv.org/abs/2309.08978v2
- Date: Sat, 6 Jul 2024 03:04:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:28:33.930686
- Title: Empowering In-Browser Deep Learning Inference on Edge Devices with Just-in-Time Kernel Optimizations
- Title(参考訳): ジャストインタイムカーネル最適化によるエッジデバイス上でのブラウザ内ディープラーニング推論
- Authors: Fucheng Jia, Shiqi Jiang, Ting Cao, Wei Cui, Tianrui Xia, Xu Cao, Yuanchun Li, Deyu Zhang, Ju Ren, Yunxin Liu, Lili Qiu, Mao Yang,
- Abstract要約: 本稿では,先駆的なブラウザ推論システム nnJIT について述べる。
nnJITは、エッジデバイス向けに最適化されたコンピューティングカーネルのジャスト・イン・タイム(JIT)自動生成を可能にする。
その結果、nJITは既存のベースラインと比較して30秒で最大8.2倍高速に達成できることがわかった。
- 参考スコア(独自算出の注目度): 30.477092899633785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Web is increasingly becoming the primary platform to deliver AI services onto edge devices, making in-browser deep learning (DL) inference more prominent. Nevertheless, the heterogeneity of edge devices, combined with the underdeveloped state of Web hardware acceleration practices, hinders current in-browser inference from achieving its full performance potential on target devices. To address this issue, this paper presents the pioneering inbrowser inference system, nnJIT, which enables just-in-time (JIT) auto-generation of optimized computing kernels for edge devices. nnJIT is built upon two novel techniques that significantly reduce kernel search and compilation overhead while improving performance firmly: Tensor-Web Compiling Co-Design lowers compiling costs by around 100X through eliminating redundant and ineffective compiling passes; Web-Specific Lite Kernel Optimization Space reduces kernel tuning costs by focusing on Web programming requirements and efficient device resource utilization, pruning the optimization space from millions to only dozens. nnJIT is evaluated for modern models, e.g., BART, T5, and Llama 2, on a range of edge devices including laptops and smartphones using different browsers and hardware from ARM, Intel, AMD and Nvidia. The results show that nnJIT can achieve up to 8.2X faster within 30 seconds compared to the existing baselines.
- Abstract(参考訳): Webは、エッジデバイスにAIサービスを提供する主要なプラットフォームになりつつあるため、ブラウザ内ディープラーニング(DL)推論がより顕著になっている。
それでも、エッジデバイスの異質性は、未開発のWebハードウェアアクセラレーションのプラクティスと相まって、現在のブラウザ内推論がターゲットデバイス上での完全なパフォーマンスのポテンシャルを達成することを妨げている。
本稿では,エッジデバイス向けに最適化されたコンピューティングカーネルのジャスト・イン・タイム(JIT)自動生成を可能にする,先駆的なブラウザ推論システム nnJIT を提案する。
Tensor-Web Compiling Co-Designは、冗長で効率的なコンパイルパスを排除して、コンパイルコストを約100倍削減する。 Web-Specific Lite Kernel Optimization Spaceは、Webプログラミングの要件と効率的なデバイスリソース利用に集中することにより、カーネルチューニングコストを削減し、最適化スペースを数百万から数十に短縮する。
nnJITは、ARM、Intel、AMD、Nvidiaのさまざまなブラウザとハードウェアを使用したラップトップやスマートフォンを含む、さまざまなエッジデバイス上で、現代的なモデル(例えば、BART、T5、Llama 2)で評価されている。
その結果、nJITは既存のベースラインと比較して30秒で最大8.2倍高速に達成できることがわかった。
関連論文リスト
- Weight Block Sparsity: Training, Compilation, and AI Engine Accelerators [0.0]
Deep Neural Networks(DNN)が開発、トレーニング、利用され、高度なデバイスと限られたデバイスの両方に負担がかかっている。
私たちのソリューションは、ハードウェアに親しみやすい構造化された空間であるエムの重みブロック間隔を実装することです。
本稿では,Resnet50,Inception V3,VGG16を用いて,AIE2構成セット(AMD Versal FPGA)の正確かつ完全なコード生成による性能評価を行う。
論文 参考訳(メタデータ) (2024-07-12T17:37:49Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Automated Design Space Exploration for optimised Deployment of DNN on
Arm Cortex-A CPUs [13.628734116014819]
組み込みデバイスにおけるディープラーニングは、ディープニューラルネットワーク(DNN)のデプロイを最適化する多くの方法の開発を促している。
テストし、グローバルに最適化されたソリューションを得るには、アプローチの空間が大きすぎるため、クロスレベル最適化に関する研究が不足している。
我々は、Arm Cortex-A CPUプラットフォーム上での最先端DNNの一連の結果を示し、最大4倍の性能向上とメモリの2倍以上の削減を実現した。
論文 参考訳(メタデータ) (2020-06-09T11:00:06Z) - Towards Real-Time DNN Inference on Mobile Platforms with Model Pruning
and Compiler Optimization [56.3111706960878]
ハイエンドなモバイルプラットフォームは、幅広いDeep Neural Network (DNN)アプリケーションのための主要なコンピューティングデバイスとして機能する。
これらのデバイス上の制約付き計算とストレージリソースは、リアルタイムの推論実行に重大な課題をもたらす。
モバイル端末上でのDNN実行を高速化するハードウェアフレンドリーな構造化モデルプルーニングとコンパイラ最適化手法を提案する。
論文 参考訳(メタデータ) (2020-04-22T03:18:23Z) - Towards High Performance Java-based Deep Learning Frameworks [0.22940141855172028]
現代のクラウドサービスは、高速で効率的なデータ処理の需要を定めている。
この需要は、ディープラーニング、データマイニング、コンピュータビジョンなど、多くのアプリケーション領域に共通している。
本稿では、JavaベースのディープラーニングフレームワークであるDeep Nettsを透過的に高速化する最先端のプログラミングフレームワークであるTornadoVMを採用しました。
論文 参考訳(メタデータ) (2020-01-13T13:03:13Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。