論文の概要: gym-saturation: Gymnasium environments for saturation provers (System
description)
- arxiv url: http://arxiv.org/abs/2309.09022v1
- Date: Sat, 16 Sep 2023 15:25:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 17:51:40.837284
- Title: gym-saturation: Gymnasium environments for saturation provers (System
description)
- Title(参考訳): ジムサチュレーション:サチュレーションプロバーのための体育館環境(システム記述)
- Authors: Boris Shminke
- Abstract要約: VampireとiProverの2つの異なるプロバーで使用例を提供しています。
環境ラッパーが証明器をマルチアームバンディットに類似した問題に変換する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work describes a new version of a previously published Python package -
gym-saturation: a collection of OpenAI Gym environments for guiding
saturation-style provers based on the given clause algorithm with reinforcement
learning. We contribute usage examples with two different provers: Vampire and
iProver. We also have decoupled the proof state representation from
reinforcement learning per se and provided examples of using a known ast2vec
Python code embedding model as a first-order logic representation. In addition,
we demonstrate how environment wrappers can transform a prover into a problem
similar to a multi-armed bandit. We applied two reinforcement learning
algorithms (Thompson sampling and Proximal policy optimisation) implemented in
Ray RLlib to show the ease of experimentation with the new release of our
package.
- Abstract(参考訳): この研究は、以前公開されたPythonパッケージジャム飽和の新バージョンについて説明する: 強化学習を伴う与えられた節アルゴリズムに基づいて飽和スタイルのプローバーを誘導するOpenAI Gym環境のコレクション。
VampireとiProverの2つの異なるプロバーで使用例を提供しています。
また,実証状態表現を自己強化学習から切り離し,既知の ast2vec Python コード埋め込みモデルを一階述語論理表現として使用する例を示した。
さらに,環境ラッパーが証明器をマルチアームのバンディットに似た問題に変換する方法を示す。
我々は,Ray RLlibに実装された2つの強化学習アルゴリズム(トンプソンサンプリングと近似ポリシー最適化)を適用し,パッケージの新リリースによる実験の容易さを示した。
関連論文リスト
- Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
最近のVision-Language Pretrainedモデルは、多くの下流タスクのバックボーンとなっている。
MLEトレーニングは、トレーニングデータにおいて、コンテキストベクトルを過度に適合する画像特徴に導くことができる。
本稿では,素早い学習のためのベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-09T10:15:59Z) - Boot and Switch: Alternating Distillation for Zero-Shot Dense Retrieval [50.47192086219752]
$texttABEL$は、ゼロショット設定でのパス検索を強化するための、シンプルだが効果的な教師なしのメソッドである。
ラベル付きデータに対して$texttABEL$を微調整するか、既存の教師付き高密度検索と統合することにより、最先端の結果が得られる。
論文 参考訳(メタデータ) (2023-11-27T06:22:57Z) - Co-training $2^L$ Submodels for Visual Recognition [67.02999567435626]
サブモデルコトレーニングは、コトレーニング、自己蒸留、深さに関連する正規化手法である。
サブモデルのコトレーニングは,画像分類やセマンティックセグメンテーションなどの認識タスクのためのバックボーンのトレーニングに有効であることを示す。
論文 参考訳(メタデータ) (2022-12-09T14:38:09Z) - Speech Sequence Embeddings using Nearest Neighbors Contrastive Learning [15.729812221628382]
教師なしのコントラスト学習目標を用いてトレーニング可能な,シンプルなニューラルエンコーダアーキテクチャを提案する。
近年の自己教師型音声表現の上に構築されている場合,本手法は反復的に適用でき,競争力のあるSSEが得られることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:28:01Z) - An audiovisual and contextual approach for categorical and continuous
emotion recognition in-the-wild [27.943550651941166]
第2回ワークショップおよびABAW(Affective Behavior Analysis in-wild)の会場における映像による視覚的感情認識の課題に取り組む。
顔の特徴の抽出にのみ依存する標準的な手法は、上記の感情情報のソースが、頭や身体の向き、解像度の低さ、照明不足によってアクセスできない場合に、正確な感情予測を欠くことが多い。
我々は、より広い感情認識フレームワークの一部として、身体的および文脈的特徴を活用することで、この問題を緩和したいと考えています。
論文 参考訳(メタデータ) (2021-07-07T20:13:17Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
プールベースのアクティブラーニングのための新しいパイプラインを提案する。
提案手法は,学習中に使用可能なアンラベリング例を利用して,ラベル付き例との相関関係を推定する。
ビジュアルトランスフォーマーは、ラベル付き例と非ラベル付き例の間の非ローカルビジュアル概念依存性をモデル化する。
論文 参考訳(メタデータ) (2021-06-07T17:13:59Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
再生カーネルヒルベルト空間におけるスパース非パラメトリック制御系を学習するための強化学習アルゴリズムを提案する。
正規化アドバンテージ関数を通じてステートアクション関数の構造を付与することにより、このアプローチのサンプル複雑さを改善します。
2次元環境下を走行しながらレーザースキャナーを搭載したロボットの複数シミュレーションにおける障害物回避政策の学習に関するアルゴリズムの性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T13:58:23Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z) - Self-supervised Pre-training with Hard Examples Improves Visual
Representations [110.23337264762512]
自己教師付き事前学習(ssp)は、ランダムな画像変換を用いて視覚表現学習のためのトレーニングデータを生成する。
まず,既存のSSPメソッドを擬似ラベル予測学習として統合するモデリングフレームワークを提案する。
そこで本研究では,疑似ラベルの予測が難しい学習例をランダムな画像変換で生成するデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-12-25T02:44:22Z) - Landscape of R packages for eXplainable Artificial Intelligence [4.91155110560629]
この記事は主にRで利用可能なツールに特化していますが、Pythonコードの統合が容易であるため、Pythonから最も人気のあるライブラリの例も紹介します。
論文 参考訳(メタデータ) (2020-09-24T16:54:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。