論文の概要: Multi-camera Bird's Eye View Perception for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2309.09080v1
- Date: Sat, 16 Sep 2023 19:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 17:32:23.391460
- Title: Multi-camera Bird's Eye View Perception for Autonomous Driving
- Title(参考訳): 自律運転のためのマルチカメラ鳥眼視知覚
- Authors: David Unger, Nikhil Gosala, Varun Ravi Kumar, Shubhankar Borse,
Abhinav Valada, Senthil Yogamani
- Abstract要約: ほとんどの自動走行システムは、複数のカメラ、レーダー、LiDARを含む多様なセンサーセットで構成されている。
3Dで直接計測するRadarやLiDARとは異なり、カメラは固有の奥行きのあいまいさで2Dの視点を投影する。
最適経路計画のための他のエージェントや構造物の空間的推論を可能にするためには、3Dで知覚出力を生成することが不可欠である。
カメラ画像から所望のBEV表現を達成するための最も基本的なアプローチは、平らな地面を仮定してIPMである。
- 参考スコア(独自算出の注目度): 17.834495597639805
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Most automated driving systems comprise a diverse sensor set, including
several cameras, Radars, and LiDARs, ensuring a complete 360\deg coverage in
near and far regions. Unlike Radar and LiDAR, which measure directly in 3D,
cameras capture a 2D perspective projection with inherent depth ambiguity.
However, it is essential to produce perception outputs in 3D to enable the
spatial reasoning of other agents and structures for optimal path planning. The
3D space is typically simplified to the BEV space by omitting the less relevant
Z-coordinate, which corresponds to the height dimension.The most basic approach
to achieving the desired BEV representation from a camera image is IPM,
assuming a flat ground surface. Surround vision systems that are pretty common
in new vehicles use the IPM principle to generate a BEV image and to show it on
display to the driver. However, this approach is not suited for autonomous
driving since there are severe distortions introduced by this too-simplistic
transformation method.
- Abstract(参考訳): ほとんどの自動走行システムは、複数のカメラ、レーダー、LiDARを含む多様なセンサーセットで構成されており、近距離および遠距離領域における360度範囲を完全に確保している。
3Dで直接計測するRadarやLiDARとは異なり、カメラは固有の奥行きの曖昧さで2Dの視点を投影する。
しかし、他のエージェントの空間的推論と最適経路計画のための構造を実現するためには、3次元で知覚出力を生成することが不可欠である。
カメラ画像から所望のbev表現を達成するための最も基本的なアプローチは、平坦な地上面を仮定してipmである。
新しい車両でよく見られる周囲の視覚システムは、IPM原則を使ってBEV画像を生成し、それを運転者に見せる。
しかし、このアプローチは、この単純すぎる変換法によって引き起こされる激しい歪みがあるため、自律運転には適さない。
関連論文リスト
- DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
カメラのみのBird's Eye View (BEV)は3次元空間における環境認識に大きな可能性を示した。
非教師なし領域適応型BEVは、様々な未ラベル対象データから効果的に学習するが、まだ未探索である。
DA-BEVは、画像ビュー機能とBEV機能の相補性を利用して、ドメイン適応型BEV課題に対処する、最初のドメイン適応型カメラのみのBEVフレームワークである。
論文 参考訳(メタデータ) (2024-01-13T04:21:24Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
マルチカメラ3Dオブジェクト検出(MC3D-Det)は,鳥眼ビュー(BEV)の出現によって注目されている。
本研究では,3次元検出と2次元カメラ平面との整合性を両立させ,一貫した高精度な検出を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T15:31:28Z) - CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity [34.025530326420146]
我々は、新しいエンドツーエンドのモノクロ3Dオブジェクト検出フレームワークであるComplementary-BEVを開発した。
道路カメラを用いたDAIR-V2X-IとRope3Dの公開3次元検出ベンチマークについて広範な実験を行った。
カメラモデルのAPスコアが初めてDAIR-V2X-Iで80%に達する。
論文 参考訳(メタデータ) (2023-10-04T13:38:53Z) - An Efficient Transformer for Simultaneous Learning of BEV and Lane
Representations in 3D Lane Detection [55.281369497158515]
3次元車線検出のための効率的な変圧器を提案する。
バニラ変圧器と異なり、我々のモデルは車線とBEVの表現を同時に学習するクロスアテンション機構を含んでいる。
本手法は,2次元および3次元の車線特徴を画像ビューとBEVの特徴にそれぞれ適用することにより,2次元および3次元車線予測を実現する。
論文 参考訳(メタデータ) (2023-06-08T04:18:31Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
本稿では,汎用マルチタスクマルチセンサ融合フレームワークであるBEVFusionを紹介する。
共有鳥眼ビュー表示空間におけるマルチモーダル特徴を統一する。
3Dオブジェクト検出では1.3%高いmAPとNDS、BEVマップのセグメンテーションでは13.6%高いmIoU、コストは1.9倍である。
論文 参考訳(メタデータ) (2022-05-26T17:59:35Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEVは3Dオブジェクトの検出とマップのセグメンテーションを共同で行う統合フレームワークである。
M$2$BEVは、両方のタスクを統一モデルで推論し、効率を向上する。
論文 参考訳(メタデータ) (2022-04-11T13:43:25Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
本研究では,複数の周囲からの情報を組み込んだSurroundDepth法を提案し,カメラ間の深度マップの予測を行う。
具体的には、周囲のすべてのビューを処理し、複数のビューから情報を効果的に融合するクロスビュー変換器を提案する。
実験において,本手法は,挑戦的なマルチカメラ深度推定データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-04-07T17:58:47Z) - BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera
Images via Spatiotemporal Transformers [39.253627257740085]
マルチカメラ画像に基づく3次元検出やマップセグメンテーションを含む3次元視覚認識タスクは、自律運転システムに不可欠である。
本稿では,複数の自律運転認識タスクをサポートするために,変圧器を用いた統合BEV表現を学習するBEVFormerという新しいフレームワークを提案する。
BEVFormerは低視認性条件下での物体の速度推定とリコールの精度を著しく向上することを示す。
論文 参考訳(メタデータ) (2022-03-31T17:59:01Z) - Monocular 3D Vehicle Detection Using Uncalibrated Traffic Cameras
through Homography [12.062095895630563]
本稿では,1台の交通カメラから3次元世界における車両の位置とポーズを抽出する手法を提案する。
道路平面と画像平面の相同性が3D車両の検出に不可欠であることを観察する。
本稿では,BEV画像の歪み検出精度を高めるためのtextittailedr-box と textitdual-view Network アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-29T02:57:37Z) - A Sim2Real Deep Learning Approach for the Transformation of Images from
Multiple Vehicle-Mounted Cameras to a Semantically Segmented Image in Bird's
Eye View [0.0]
カメラの視点を鳥の視線(BEV)に変換すると、距離をより容易に推定できる。
本稿では,複数の車載カメラから補正された360度BEV画像を得る方法について述べる。
ニューラルネットワークのアプローチは、手動でラベル付けされたデータに頼るのではなく、実世界のデータに対してうまく一般化するように、合成データセットでトレーニングされる。
論文 参考訳(メタデータ) (2020-05-08T14:54:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。