First-order Quantum Phase Transitions and Localization in the 2D Haldane
Model with Non-Hermitian Quasicrystal Boundaries
- URL: http://arxiv.org/abs/2309.09173v1
- Date: Sun, 17 Sep 2023 06:02:28 GMT
- Title: First-order Quantum Phase Transitions and Localization in the 2D Haldane
Model with Non-Hermitian Quasicrystal Boundaries
- Authors: Xianqi Tong, Su-Peng Kou
- Abstract summary: We show the discovery of a new critical phase and imaginary zeros induced first-order quantum phase transition within the two-dimensional (2D) Haldane model.
Our research enhances the comprehension of phase diagrams associated with high-dimensional quasicrystal potentials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-Hermitian extension of quasicrystals (QC) are highly tunable system
for exploring novel material phases. While extended-localized phase transitions
have been observed in one dimension, quantum phase transition in higher
dimensions and various system sizes remain unexplored. Here, we show the
discovery of a new critical phase and imaginary zeros induced first-order
quantum phase transition within the two-dimensional (2D) Haldane model with a
quasicrystal potential on the upper boundary. Initially, we illustrate a phase
diagram that evolves with the amplitude and phase of the quasiperiodic
potential, which is divided into three distinct phases by two critical
boundaries: phase (I) with extended wave functions, PT-restore phase (II) with
localized wave functions, and a critical phase (III) with multifunctional wave
functions. To describe the wavefunctions in these distinct phases, we introduce
a low-energy approximation theory and an effective two-chain model.
Additionally, we uncover a first-order structural phase transition induced
(FOSPT) by imaginary zeros. As we increase the size of the potential boundary,
we observe the critical phase splitting into regions in proportion to the
growing number of potential zeros. Importantly, these observations are
consistent with groundstate fidelity and energy gap calculations. Our research
enhances the comprehension of phase diagrams associated with high-dimensional
quasicrystal potentials, offering valuable contributions to the exploration of
unique phases and quantum phase transition.
Related papers
- A phase microscope for quantum gases [0.0]
Coherence properties are central to quantum systems and are at the heart of phenomena such as superconductivity.
We study coherence properties of an ultracold Bose gas in a two-dimensional optical lattice across the thermal phase transition.
arXiv Detail & Related papers (2024-10-14T15:17:45Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [0.7499722271664147]
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model.
We find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation.
Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems.
arXiv Detail & Related papers (2023-11-19T15:13:57Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Staggered quantum phases of dipolar bosons at finite temperatures [0.0]
We study finite-temperature phase transitions of quantum phases of dipolar bosons in a two-dimensional optical lattice.
We estimate the critical temperature of the staggered superfluid to normal fluid transition and show that this transition is of the Kosterlitz-Thouless type.
Our study paves a way to observe novel staggered quantum phases in recent dipolar optical lattice experiments.
arXiv Detail & Related papers (2022-11-09T11:44:45Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Predicting Critical Phases from Entanglement Dynamics in XXZ Alternating
Chain [0.0]
The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich equilibrium phase diagram.
We show that the nearest neighbor bipartite and multipartite entanglement can detect quantum critical lines and phases in this model.
arXiv Detail & Related papers (2021-12-22T18:02:51Z) - Quantum phase transition in the one-dimensional Dicke-Hubbard model with
coupled qubits [20.002319486166016]
We study the ground state phase diagram of a one-dimensional two qubits Dicke-Hubbard model with XY qubit-qubit interaction.
arXiv Detail & Related papers (2021-11-05T13:17:49Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.