A phase microscope for quantum gases
- URL: http://arxiv.org/abs/2410.10611v1
- Date: Mon, 14 Oct 2024 15:17:45 GMT
- Title: A phase microscope for quantum gases
- Authors: Justus C. Brüggenjürgen, Mathis S. Fischer, Christof Weitenberg,
- Abstract summary: Coherence properties are central to quantum systems and are at the heart of phenomena such as superconductivity.
We study coherence properties of an ultracold Bose gas in a two-dimensional optical lattice across the thermal phase transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherence properties are central to quantum systems and are at the heart of phenomena such as superconductivity. Here we study coherence properties of an ultracold Bose gas in a two-dimensional optical lattice across the thermal phase transition. To infer the phase coherence and phase fluctuation profile, we use direct matter-wave imaging of higher Talbot revivals as well as a new phase microscope based on a site-resolved mapping of phase fluctuations to density fluctuations during matter-wave imaging. We observe the algebraic decay of the phase correlations in the superfluid phase and a linear temperature increase of the exponent. These techniques will also allow studying coherence properties in strongly-correlated quantum systems with full spatial resolution.
Related papers
- Background resilient quantitative phase microscopy using entangled photons [0.0]
We introduce a quantum-based quantitative phase microscopy technique using a phase gradient approach.
We show that the technique, while achieving an imaging resolution of 2.76,$mu$m, is phase accurate to at least $lambda/30$ and phase sensitive to $lambda/100$ at a wavelength of 810,nm.
arXiv Detail & Related papers (2024-06-10T15:39:32Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - First-order Quantum Phase Transitions and Localization in the 2D Haldane
Model with Non-Hermitian Quasicrystal Boundaries [0.0]
We show the discovery of a new critical phase and imaginary zeros induced first-order quantum phase transition within the two-dimensional (2D) Haldane model.
Our research enhances the comprehension of phase diagrams associated with high-dimensional quasicrystal potentials.
arXiv Detail & Related papers (2023-09-17T06:02:28Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Staggered quantum phases of dipolar bosons at finite temperatures [0.0]
We study finite-temperature phase transitions of quantum phases of dipolar bosons in a two-dimensional optical lattice.
We estimate the critical temperature of the staggered superfluid to normal fluid transition and show that this transition is of the Kosterlitz-Thouless type.
Our study paves a way to observe novel staggered quantum phases in recent dipolar optical lattice experiments.
arXiv Detail & Related papers (2022-11-09T11:44:45Z) - Thermodynamic Phase Diagram of Two-Dimensional Bosons in a Quasicrystal
Potential [0.0]
We determine the thermodynamic phase diagram of interacting bosons in a two-dimensional, homogeneous quasicrystal potential.
Our results are found using quantum Monte Carlo simulations.
In particular, we demonstrate stabilization of a genuine Bose glass phase against the normal fluid in sizable parameter ranges.
arXiv Detail & Related papers (2022-10-27T15:09:36Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Observation of a non-Hermitian phase transition in an optical quantum
gas [0.0]
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems.
We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase.
arXiv Detail & Related papers (2020-10-29T17:59:10Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.