Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises
- URL: http://arxiv.org/abs/2309.09216v1
- Date: Sun, 17 Sep 2023 08:56:36 GMT
- Title: Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises
- Authors: Alexander Barbie and Wilhelm Hasselbring
- Abstract summary: Digital twins have the potential for cost-effective software development and maintenance strategies.
We interviewed SMEs about their current development processes.
First results show that real-time requirements prevent, to date, a Software-in-the-Loop development approach.
- Score: 55.57032418885258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transformation to Industry 4.0 changes the way embedded software systems
are developed. Digital twins have the potential for cost-effective software
development and maintenance strategies. With reduced costs and faster
development cycles, small and medium-sized enterprises (SME) have the chance to
grow with new smart products. We interviewed SMEs about their current
development processes. In this paper, we present the first results of these
interviews. First results show that real-time requirements prevent, to date, a
Software-in-the-Loop development approach, due to a lack of proper tooling.
Security/safety concerns, and the accessibility of hardware are the main
impediments. Only temporary access to the hardware leads to
Software-in-the-Loop development approaches based on simulations/emulators.
Yet, this is not in all use cases possible. All interviewees see the potential
of Software-in-the-Loop approaches and digital twins with regard to quality and
customization. One reason it will take some effort to convince engineers, is
the conservative nature of the embedded community, particularly in SMEs.
Related papers
- Morescient GAI for Software Engineering [2.4861619769660637]
Using Generative AI (GAI) for software engineering tasks is one of the most rapidly expanding fields of software engineering research.
We present a vision for how such "Morescient" GAI models can be engineered, evolved and disseminated according to the principles of open science.
arXiv Detail & Related papers (2024-06-07T07:38:33Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - CARLOS: An Open, Modular, and Scalable Simulation Framework for the Development and Testing of Software for C-ITS [0.0]
We propose CARLOS - an open, modular, and scalable simulation framework for the development and testing of software in C-ITS.
We provide core building blocks for this framework and explain how it can be used and extended by the community.
In our paper, we motivate the architecture by describing important design principles and showcasing three major use cases.
arXiv Detail & Related papers (2024-04-02T10:48:36Z) - Enabling Automated Integration Testing of Smart Farming Applications via
Digital Twin Prototypes [49.44419860570116]
Industry 4.0 and smart farming are closely related, as many of the technologies used in smart farming are also used in Industry 4.0.
Digital twins have the potential for cost-effective software development of such applications.
We present a case study for employing our Digital Twin Prototype approach to automated testing of software.
arXiv Detail & Related papers (2023-11-09T21:24:12Z) - Intelligent Software Tooling for Improving Software Development [3.1763879286782966]
Deep Learning (DL) has shown huge advancements in automation across many domains, including Software Development processes.
One of the main reasons behind this success is the availability of large datasets such as open-source code available through GitHub or image datasets of mobile Graphical User Interfaces (GUIs) with RICO and ReDRAW to be trained on.
arXiv Detail & Related papers (2023-10-17T01:29:07Z) - Software Development in Startup Companies: The Greenfield Startup Model [4.881718571745022]
This study aims to improve understanding of the software development strategies employed by startups.
We packaged the results in the Greenfield Startup Model (GSM), which explains the priority of startups to release the product as quickly as possible.
The resulting implications of the GSM outline challenges and gaps, pointing out opportunities for future research to develop and validate engineering practices in the startup context.
arXiv Detail & Related papers (2023-08-18T10:08:10Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Software Effort Estimation using parameter tuned Models [1.9336815376402716]
The imprecision of the estimation is the reason for Project Failure.
The greatest pitfall of the software industry was the fast-changing nature of software development.
We need the development of useful models that accurately predict the cost of developing a software product.
arXiv Detail & Related papers (2020-08-25T15:18:59Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.