論文の概要: Talk2Care: Facilitating Asynchronous Patient-Provider Communication with
Large-Language-Model
- arxiv url: http://arxiv.org/abs/2309.09357v4
- Date: Tue, 12 Dec 2023 05:08:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 19:42:57.687872
- Title: Talk2Care: Facilitating Asynchronous Patient-Provider Communication with
Large-Language-Model
- Title(参考訳): Talk2Care: 大規模言語モデルによる非同期患者プロバイダ通信の実現
- Authors: Ziqi Yang, Xuhai Xu, Bingsheng Yao, Shao Zhang, Ethan Rogers, Stephen
Intille, Nawar Shara, Guodong Gordon Gao, Dakuo Wang
- Abstract要約: LLMを利用したコミュニケーションシステムTalk2Careを,高齢者と医療提供者向けに開発した。
高齢者に対しては,音声アシスタント(VA)の利便性とアクセシビリティを活用し,効果的な情報収集のためのLLMを利用したVAインタフェースを構築した。
その結果,Talk2Careはコミュニケーションプロセスを促進し,高齢者の健康情報を充実させ,提供者の努力と時間を著しく節約できることがわかった。
- 参考スコア(独自算出の注目度): 29.982507402325396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the plethora of telehealth applications to assist home-based older
adults and healthcare providers, basic messaging and phone calls are still the
most common communication methods, which suffer from limited availability,
information loss, and process inefficiencies. One promising solution to
facilitate patient-provider communication is to leverage large language models
(LLMs) with their powerful natural conversation and summarization capability.
However, there is a limited understanding of LLMs' role during the
communication. We first conducted two interview studies with both older adults
(N=10) and healthcare providers (N=9) to understand their needs and
opportunities for LLMs in patient-provider asynchronous communication. Based on
the insights, we built an LLM-powered communication system, Talk2Care, and
designed interactive components for both groups: (1) For older adults, we
leveraged the convenience and accessibility of voice assistants (VAs) and built
an LLM-powered VA interface for effective information collection. (2) For
health providers, we built an LLM-based dashboard to summarize and present
important health information based on older adults' conversations with the VA.
We further conducted two user studies with older adults and providers to
evaluate the usability of the system. The results showed that Talk2Care could
facilitate the communication process, enrich the health information collected
from older adults, and considerably save providers' efforts and time. We
envision our work as an initial exploration of LLMs' capability in the
intersection of healthcare and interpersonal communication.
- Abstract(参考訳): 在宅高齢者や医療提供者を支援するための遠隔医療アプリケーションが多いにもかかわらず、基本的なメッセージングや電話は依然として最も一般的なコミュニケーション方法であり、可用性や情報損失、プロセスの非効率に苦しんでいる。
患者と提供者のコミュニケーションを促進する有望な解決策の1つは、強力な自然会話と要約機能を備えた大規模言語モデル(llm)を活用することである。
しかし、通信におけるllmsの役割の理解は限られている。
まず,高齢者 (N=10) と医療提供者 (N=9) の2つのインタビュー研究を行い, 患者支援非同期コミュニケーションにおけるLSMの必要性と機会について検討した。
1)高齢者向けに音声アシスタント(vas)の利便性とアクセシビリティを活用し,効果的な情報収集のためにllmを利用したvaインターフェースを構築した。
2)健康提供者向けに,高齢者のvaとの会話に基づく重要な健康情報を要約し提示するための,llmベースのダッシュボードを構築した。
さらに,高齢者と提供者との2つのユーザスタディを行い,システムのユーザビリティを評価した。
その結果,Talk2Careはコミュニケーションプロセスを促進し,高齢者の健康情報を充実させ,提供者の努力と時間を著しく節約できることがわかった。
我々は,医療と対人コミュニケーションの交点におけるllmsの能力の探索として,我々の研究を期待する。
関連論文リスト
- NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
我々はジャーナリストのインタビューに焦点をあて、コミュニケーションの基盤と豊富なデータに富んだドメインに焦点をあてる。
我々はNPRとCNNから4万人の2人によるインフォメーションインタビューのデータセットをキュレートする。
LLMは、人間のインタビュアーよりも、認識を使い、より高いレベルの質問に目を向ける可能性がはるかに低い。
論文 参考訳(メタデータ) (2024-11-21T01:37:38Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations [23.09755446991835]
デジタル医療において、大きな言語モデル(LLM)は質問応答能力を高めるために主に利用されてきた。
本稿では,LLMヘルスケアチェーンの問合せ能力を評価するための新しいフレームワークであるHealthQを提案する。
論文 参考訳(メタデータ) (2024-09-28T23:59:46Z) - Leveraging Large Language Models for Patient Engagement: The Power of Conversational AI in Digital Health [1.8772687384996551]
大規模言語モデル(LLM)は、会話型AIを通じて医療における患者のエンゲージメントを変革する新たな機会を開いた。
4つのケーススタディを通して,LLMの非構造化会話データ処理能力を示す。
論文 参考訳(メタデータ) (2024-06-19T16:02:04Z) - Polaris: A Safety-focused LLM Constellation Architecture for Healthcare [17.074456639617996]
Polarisは、リアルタイムの患者とAIの医療会話のための、安全に焦点を当てた初めてのLLMコンステレーションだ。
当社のモデルは、プロプライエタリなデータ、臨床ケア計画、医療規制文書、医療マニュアル、その他の医学推論文書に基づいてトレーニングします。
我々は、このシステムのエンドツーエンドの会話評価を行うために、1100人以上の米国免許看護師と130人以上の米国医師を募集した。
論文 参考訳(メタデータ) (2024-03-20T05:34:03Z) - GOMA: Proactive Embodied Cooperative Communication via Goal-Oriented Mental Alignment [72.96949760114575]
我々は、ゴール指向メンタルアライメント(GOMA)という新しい協調コミュニケーションフレームワークを提案する。
GOMAは、目標に関連のあるエージェントの精神状態のミスアライメントを最小限に抑える計画問題として、言語コミュニケーションを定式化している。
我々は,Overcooked(マルチプレイヤーゲーム)とVirtualHome(家庭用シミュレータ)の2つの挑戦環境において,強いベースラインに対するアプローチを評価する。
論文 参考訳(メタデータ) (2024-03-17T03:52:52Z) - Healthcare Copilot: Eliciting the Power of General LLMs for Medical
Consultation [96.22329536480976]
医療相談用に設計された医療コパイロットの構築について紹介する。
提案した医療コパイロットは,(1)効果的で安全な患者との対話に責任を負う対話コンポーネント,2)現在の会話データと過去の患者情報の両方を記憶する記憶コンポーネント,3)処理コンポーネント,そして,対話全体を要約し,報告を生成する。
提案したヘルスケア・コパイロットを評価するために,ChatGPT を用いた仮想患者とコーピロとの対話を行う仮想患者と,対話の質を評価するための評価器の2つの役割を自動評価する手法を実装した。
論文 参考訳(メタデータ) (2024-02-20T22:26:35Z) - Benchmarking Large Language Models on Communicative Medical Coaching: a Novel System and Dataset [26.504409173684653]
患者相談におけるコミュニケーションスキルの実践を支援するための,人間とAIの協調的枠組みであるChatCoachを紹介する。
ChatCoachは、医療学習者が患者エージェントと対話できるシミュレートされた環境を提供し、コーチエージェントは即時かつ構造化されたフィードバックを提供する。
我々はChatCoachフレームワーク内で、コミュニケーション型医療コーチングタスクにおいて、LLM(Large Language Models)を評価するためのデータセットを開発した。
論文 参考訳(メタデータ) (2024-02-08T10:32:06Z) - LLM on FHIR -- Demystifying Health Records [0.32985979395737786]
本研究では,大規模言語モデル(LLM)を用いた健康記録と対話可能なアプリを開発した。
このアプリは、医療データを患者フレンドリーな言語に効果的に翻訳し、その反応を異なる患者プロファイルに適応させることができた。
論文 参考訳(メタデータ) (2024-01-25T17:45:34Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
大規模言語モデル(LLM)は、流動的で一貫性があり多様な応答を生成する。
しかし、それらは重要な能力、コミュニケーションスキルを欠いている。
本稿は,内的モノローグによるLLMのコミュニケーション能力向上を目的としている。
実験の結果,提案したCSIM戦略はバックボーンモデルを改善し,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T16:19:42Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。