論文の概要: An Automatic Tuning MPC with Application to Ecological Cruise Control
- arxiv url: http://arxiv.org/abs/2309.09358v1
- Date: Sun, 17 Sep 2023 19:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 16:04:18.618395
- Title: An Automatic Tuning MPC with Application to Ecological Cruise Control
- Title(参考訳): 自動調整型MPCとエコロジークルーズ制御への応用
- Authors: Mohammad Abtahi, Mahdis Rabbani, and Shima Nazari
- Abstract要約: 本稿では,MPCコントローラのオンライン自動チューニングへのアプローチと,エコロジークルーズ制御システムへの例を示す。
我々は、動的プログラミングを用いて、グローバルな燃費最小化問題をオフラインで解決し、対応するMPCコスト関数を求める。
これらのオフライン結果に適合したニューラルネットワークを用いて、オンライン操作中に所望のMPCコスト関数重みを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model predictive control (MPC) is a powerful tool for planning and
controlling dynamical systems due to its capacity for handling constraints and
taking advantage of preview information. Nevertheless, MPC performance is
highly dependent on the choice of cost function tuning parameters. In this
work, we demonstrate an approach for online automatic tuning of an MPC
controller with an example application to an ecological cruise control system
that saves fuel by using a preview of road grade. We solve the global fuel
consumption minimization problem offline using dynamic programming and find the
corresponding MPC cost function by solving the inverse optimization problem. A
neural network fitted to these offline results is used to generate the desired
MPC cost function weight during online operation. The effectiveness of the
proposed approach is verified in simulation for different road geometries.
- Abstract(参考訳): モデル予測制御(MPC)は、制約の処理能力とプレビュー情報の活用により、動的システムの計画と制御を行う強力なツールである。
それでも、MPCの性能はコスト関数チューニングパラメータの選択に大きく依存している。
本研究では,mpcコントローラのオンライン自動チューニングへのアプローチを実証し,道路グレードのプレビューを用いて燃料を節約する環境クルーズ制御システムへの適用例を示す。
動的プログラミングを用いて,グローバル燃料消費最小化問題をオフラインで解決し,逆最適化問題を解くことで対応するMPCコスト関数を求める。
これらのオフライン結果に適応したニューラルネットワークを用いて、オンライン操作中に所望のmpcコスト関数重みを生成する。
提案手法の有効性は道路形状の異なるシミュレーションにより検証された。
関連論文リスト
- Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - On Building Myopic MPC Policies using Supervised Learning [0.0]
本稿では,教師付き学習を用いて最適値関数をオフラインで学習する代替戦略について考察する。
これは、非常に短い予測地平線を持つミオピックMPCのコスト・ツー・ゴー関数として使用できる。
論文 参考訳(メタデータ) (2024-01-23T08:08:09Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Reinforcement Learning with Model Predictive Control for Highway Ramp Metering [14.389086937116582]
この研究は、交通フロー管理を強化するためのモデルベースと学習ベースの戦略の相乗効果について考察する。
制御問題は、適切なステージコスト関数を作成することにより、RLタスクとして定式化される。
RLアルゴリズムの関数近似として MPC 最適問題を利用する MPC ベースの RL アプローチを提案し,オンランプの効率的な制御について検討した。
論文 参考訳(メタデータ) (2023-11-15T09:50:54Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Optimization of the Model Predictive Control Meta-Parameters Through
Reinforcement Learning [1.4069478981641936]
強化学習(RL)を用いて制御アルゴリズムの任意のパラメータを協調的に調整できる新しいフレームワークを提案する。
我々は,倒立振子制御タスクの枠組みを実証し,制御システムの総時間を36%削減するとともに,最高性能のMPCベースラインよりも18.4%向上した。
論文 参考訳(メタデータ) (2021-11-07T18:33:22Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
我々は,過去の決定に依拠する損失関数を許容するメモリを用いたオンライン凸最適化(OCO)の問題について検討する。
本稿では,非定常環境に対してロバストなアルゴリズムを設計するための性能指標として,動的ポリシーの後悔を紹介する。
我々は,時間的地平線,非定常度,メモリ長といった面で,最適な動的ポリシーの後悔を確実に享受するメモリ付きOCOの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T09:45:15Z) - Blending MPC & Value Function Approximation for Efficient Reinforcement
Learning [42.429730406277315]
モデル予測制御(MPC)は、複雑な実世界のシステムを制御する強力なツールである。
モデルフリー強化学習(RL)によるMPC改善のためのフレームワークを提案する。
我々は,本手法がmpcに匹敵する性能と真のダイナミクスを両立できることを示す。
論文 参考訳(メタデータ) (2020-12-10T11:32:01Z) - A Learning-Based Tune-Free Control Framework for Large Scale Autonomous
Driving System Deployment [5.296964852594282]
このフレームワークは、自律運転のための制御パラメータチューニングを共同で自動化する3つの機械学習ベースの手順で構成されている。
シミュレーションと道路試験の両方において,パラメータ調整効率が大幅に向上し,制御性能が向上したことを示す。
論文 参考訳(メタデータ) (2020-11-09T08:54:36Z) - Learning High-Level Policies for Model Predictive Control [54.00297896763184]
Model Predictive Control (MPC)は、ロボット制御タスクに対する堅牢なソリューションを提供する。
ニューラルネットワークの高レベルポリシーを学習するための自己教師付き学習アルゴリズムを提案する。
提案手法は, 標準的なMPCでは困難な状況に対処できることを示す。
論文 参考訳(メタデータ) (2020-07-20T17:12:34Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。