論文の概要: Does Video Summarization Require Videos? Quantifying the Effectiveness
of Language in Video Summarization
- arxiv url: http://arxiv.org/abs/2309.09405v1
- Date: Mon, 18 Sep 2023 00:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 15:43:36.368593
- Title: Does Video Summarization Require Videos? Quantifying the Effectiveness
of Language in Video Summarization
- Title(参考訳): ビデオ要約はビデオを必要とするか?
ビデオ要約における言語の有効性の定量化
- Authors: Yoonsoo Nam, Adam Lehavi, Daniel Yang, Digbalay Bose, Swabha
Swayamdipta, Shrikanth Narayanan
- Abstract要約: 入力ビデオのサイズが要約されるため、コンピュータビジョンにおいてビデオの要約は依然として大きな課題である。
本稿では,高いデータ効率で競合精度を実現する,効率的な言語のみの映像要約器を提案する。
- 参考スコア(独自算出の注目度): 37.09662541127891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video summarization remains a huge challenge in computer vision due to the
size of the input videos to be summarized. We propose an efficient,
language-only video summarizer that achieves competitive accuracy with high
data efficiency. Using only textual captions obtained via a zero-shot approach,
we train a language transformer model and forego image representations. This
method allows us to perform filtration amongst the representative text vectors
and condense the sequence. With our approach, we gain explainability with
natural language that comes easily for human interpretation and textual
summaries of the videos. An ablation study that focuses on modality and data
compression shows that leveraging text modality only effectively reduces input
data processing while retaining comparable results.
- Abstract(参考訳): 入力ビデオのサイズが要約されるため、コンピュータビジョンにおいてビデオの要約は依然として大きな課題である。
本稿では,高いデータ効率で競合精度を実現する,効率的な言語のみのビデオ要約器を提案する。
ゼロショットアプローチで得られたテキストキャプションのみを用いて,言語トランスフォーマーモデルと前置画像表現を訓練する。
この方法により、代表テキストベクトル間でフィルタリングを行い、シーケンスをコンデンスすることができる。
提案手法では,人間の解釈やビデオのテキスト要約に容易に対応できる自然言語による説明性を得る。
モダリティとデータ圧縮に焦点を当てたアブレーション研究では、テキストモダリティを活用することで、比較結果を維持しながら入力データ処理を効果的に削減できることが示された。
関連論文リスト
- Towards Holistic Language-video Representation: the language model-enhanced MSR-Video to Text Dataset [4.452729255042396]
より堅牢で総合的な言語とビデオの表現が、ビデオの理解を前進させる鍵だ。
現在の平易で単純なテキスト記述と、言語ビデオタスクに対する視覚のみの焦点は、現実世界の自然言語ビデオ検索タスクにおいて限られた能力をもたらす。
本稿では,ビデオ言語データセットを自動的に拡張し,モダリティと文脈認識を向上する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T20:16:17Z) - Language-Guided Self-Supervised Video Summarization Using Text Semantic Matching Considering the Diversity of the Video [22.60291297308379]
本研究では,映像要約タスクを自然言語処理(NLP)タスクに変換する可能性について検討する。
本手法は,ランク相関係数のSumMeデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-14T18:07:04Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Tellerは、マルチモーダル融合と微粒なモーダルアライメントを利用するビデオ言語基盤モデルである。
Video-Tellerは、凍結した事前訓練されたビジョンと言語モジュールを利用することで、トレーニング効率を高める。
大規模言語モデルの堅牢な言語機能を活用し、簡潔かつ精巧なビデオ記述の生成を可能にする。
論文 参考訳(メタデータ) (2023-10-08T03:35:27Z) - Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer [79.20605034378187]
ビデオ言語事前学習モデルは、ビデオ質問応答タスクの指導において顕著な成功を収めている。
ビデオシーケンスの長さのため、大規模なビデオベースモデルのトレーニングは、画像ベースモデルのトレーニングよりもかなりコストがかかる。
これは、画像ドメインとビデオドメインの間に明らかなギャップがあるにもかかわらず、画像ベースの事前学習からの知識を活用する動機となります。
論文 参考訳(メタデータ) (2023-08-16T15:00:50Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
そこで本研究では,自然言語による記述を生成するために長編動画を音声化し,生成したストーリーの映像理解タスクを実行することを提案する。
提案手法は,ゼロショットであるにもかかわらず,ビデオ理解のための教師付きベースラインよりもはるかに優れた結果が得られる。
ストーリー理解ベンチマークの欠如を緩和するため,我々は,説得戦略の識別に関する計算社会科学における重要な課題に関する最初のデータセットを公開している。
論文 参考訳(メタデータ) (2023-05-16T19:13:11Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
マルチチャンネルビデオ言語検索は、異なるチャンネルからの情報を理解するためにモデルを必要とする。
対照的なマルチモーダルモデルは、画像やビデオやテキストのエンティティの整合に非常に効果的であることが示されている。
これら2つの行を、限られたデータとリソースを持つマルチチャンネルビデオ言語検索に迅速に適応する方法は、明らかではない。
論文 参考訳(メタデータ) (2022-06-05T01:43:52Z) - Text-Driven Video Acceleration: A Weakly-Supervised Reinforcement
Learning Method [6.172652648945223]
本稿では,テキストを用いた指導ビデオの高速化を目的とした,弱教師付き手法を提案する。
新たな共同報酬関数がエージェントを誘導し、どのフレームから入力ビデオを取り除き、ターゲット長に減らすかを選択する。
また,高度に識別可能な埋め込み空間を生成可能な拡張視覚誘導型文書注意ネットワーク(VDAN+)を提案する。
論文 参考訳(メタデータ) (2022-03-29T17:43:01Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
本稿では,事前学習した1つの視覚言語モデルを,最小限のトレーニングで新しいタスクに効果的に適応させる方法を提案する。
静的画像とビデオのギャップを埋めるために、フレームワイドの視覚的特徴の上に軽量なトランスフォーマーを積み重ねたテンポラリな情報をエンコードする。
論文 参考訳(メタデータ) (2021-12-08T18:58:16Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
我々は、明示的なアノテーションを使わずに、文章と騒々しいビデオスニペットのマッピングを学習することで、視覚と自然言語を理解するように機械に教える。
トレーニングと評価のために、多数のオンラインビデオとサブタイトルを含む新しいデータセットApartmenTourをコントリビュートする。
論文 参考訳(メタデータ) (2020-11-19T03:43:56Z) - Straight to the Point: Fast-forwarding Videos via Reinforcement Learning
Using Textual Data [1.004766879203303]
本稿では,指導ビデオの高速化を目的とした強化学習の定式化に基づく新しい手法を提案する。
本手法では,最終映像のギャップを生じさせることなく,情報伝達に関係のないフレームを適応的に選択できる。
本稿では,VDAN(Visually-Guided Document Attention Network)と呼ばれる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。