Adaptive Reorganization of Neural Pathways for Continual Learning with Spiking Neural Networks
- URL: http://arxiv.org/abs/2309.09550v3
- Date: Mon, 28 Oct 2024 13:10:41 GMT
- Title: Adaptive Reorganization of Neural Pathways for Continual Learning with Spiking Neural Networks
- Authors: Bing Han, Feifei Zhao, Wenxuan Pan, Zhaoya Zhao, Xianqi Li, Qingqun Kong, Yi Zeng,
- Abstract summary: We propose a brain-inspired continual learning algorithm with adaptive reorganization of neural pathways.
The proposed model demonstrates consistent superiority in performance, energy consumption, and memory capacity on diverse continual learning tasks.
- Score: 9.889775504641925
- License:
- Abstract: The human brain can self-organize rich and diverse sparse neural pathways to incrementally master hundreds of cognitive tasks. However, most existing continual learning algorithms for deep artificial and spiking neural networks are unable to adequately auto-regulate the limited resources in the network, which leads to performance drop along with energy consumption rise as the increase of tasks. In this paper, we propose a brain-inspired continual learning algorithm with adaptive reorganization of neural pathways, which employs Self-Organizing Regulation networks to reorganize the single and limited Spiking Neural Network (SOR-SNN) into rich sparse neural pathways to efficiently cope with incremental tasks. The proposed model demonstrates consistent superiority in performance, energy consumption, and memory capacity on diverse continual learning tasks ranging from child-like simple to complex tasks, as well as on generalized CIFAR100 and ImageNet datasets. In particular, the SOR-SNN model excels at learning more complex tasks as well as more tasks, and is able to integrate the past learned knowledge with the information from the current task, showing the backward transfer ability to facilitate the old tasks. Meanwhile, the proposed model exhibits self-repairing ability to irreversible damage and for pruned networks, could automatically allocate new pathway from the retained network to recover memory for forgotten knowledge.
Related papers
- Similarity-based context aware continual learning for spiking neural networks [12.259720271932661]
We propose a Similarity-based Context Aware Spiking Neural Network (SCA-SNN) continual learning algorithm.
Based on contextual similarity across tasks, the SCA-SNN model can adaptively reuse neurons from previous tasks that are beneficial for new tasks.
Our algorithm has the capability to adaptively select similar groups of neurons for related tasks, offering a promising approach to enhancing the biological interpretability of efficient continual learning.
arXiv Detail & Related papers (2024-10-28T09:38:57Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
Self-organizing map (SOM) is a neural model often used in clustering and dimensionality reduction.
We propose a generalization of the SOM, the continual SOM, which is capable of online unsupervised learning under a low memory budget.
Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy.
arXiv Detail & Related papers (2024-02-19T19:11:22Z) - Enhancing Efficient Continual Learning with Dynamic Structure
Development of Spiking Neural Networks [6.407825206595442]
Children possess the ability to learn multiple cognitive tasks sequentially.
Existing continual learning frameworks are usually applicable to Deep Neural Networks (DNNs)
We propose Dynamic Structure Development of Spiking Neural Networks (DSD-SNN) for efficient and adaptive continual learning.
arXiv Detail & Related papers (2023-08-09T07:36:40Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Beneficial Perturbation Network for designing general adaptive
artificial intelligence systems [14.226973149346886]
We propose a new type of deep neural network with extra, out-of-network, task-dependent biasing units to accommodate dynamic situations.
Our approach is memory-efficient and parameter-efficient, can accommodate many tasks, and achieves state-of-the-art performance across different tasks and domains.
arXiv Detail & Related papers (2020-09-27T01:28:10Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure.
In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli.
arXiv Detail & Related papers (2019-06-03T21:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.