Enhancing Efficient Continual Learning with Dynamic Structure
Development of Spiking Neural Networks
- URL: http://arxiv.org/abs/2308.04749v1
- Date: Wed, 9 Aug 2023 07:36:40 GMT
- Title: Enhancing Efficient Continual Learning with Dynamic Structure
Development of Spiking Neural Networks
- Authors: Bing Han, Feifei Zhao, Yi Zeng, Wenxuan Pan, Guobin Shen
- Abstract summary: Children possess the ability to learn multiple cognitive tasks sequentially.
Existing continual learning frameworks are usually applicable to Deep Neural Networks (DNNs)
We propose Dynamic Structure Development of Spiking Neural Networks (DSD-SNN) for efficient and adaptive continual learning.
- Score: 6.407825206595442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Children possess the ability to learn multiple cognitive tasks sequentially,
which is a major challenge toward the long-term goal of artificial general
intelligence. Existing continual learning frameworks are usually applicable to
Deep Neural Networks (DNNs) and lack the exploration on more brain-inspired,
energy-efficient Spiking Neural Networks (SNNs). Drawing on continual learning
mechanisms during child growth and development, we propose Dynamic Structure
Development of Spiking Neural Networks (DSD-SNN) for efficient and adaptive
continual learning. When learning a sequence of tasks, the DSD-SNN dynamically
assigns and grows new neurons to new tasks and prunes redundant neurons,
thereby increasing memory capacity and reducing computational overhead. In
addition, the overlapping shared structure helps to quickly leverage all
acquired knowledge to new tasks, empowering a single network capable of
supporting multiple incremental tasks (without the separate sub-network mask
for each task). We validate the effectiveness of the proposed model on multiple
class incremental learning and task incremental learning benchmarks. Extensive
experiments demonstrated that our model could significantly improve
performance, learning speed and memory capacity, and reduce computational
overhead. Besides, our DSD-SNN model achieves comparable performance with the
DNNs-based methods, and significantly outperforms the state-of-the-art (SOTA)
performance for existing SNNs-based continual learning methods.
Related papers
- ALADE-SNN: Adaptive Logit Alignment in Dynamically Expandable Spiking Neural Networks for Class Incremental Learning [15.022211557367273]
We develop spiking neural networks (SNNs) with dynamic structures for Class Incremental Learning (CIL)
We propose the ALADE-SNN framework, which includes adaptive logit alignment for balanced feature representation and OtoN suppression to manage weights mapping frozen old features to new classes during training.
Experiment results show that ALADE-SNN achieves an average incremental accuracy of 75.42 on the CIFAR100-B0 benchmark over 10 incremental steps.
arXiv Detail & Related papers (2024-12-17T09:13:22Z) - Similarity-based context aware continual learning for spiking neural networks [12.259720271932661]
We propose a Similarity-based Context Aware Spiking Neural Network (SCA-SNN) continual learning algorithm.
Based on contextual similarity across tasks, the SCA-SNN model can adaptively reuse neurons from previous tasks that are beneficial for new tasks.
Our algorithm has the capability to adaptively select similar groups of neurons for related tasks, offering a promising approach to enhancing the biological interpretability of efficient continual learning.
arXiv Detail & Related papers (2024-10-28T09:38:57Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Context Gating in Spiking Neural Networks: Achieving Lifelong Learning through Integration of Local and Global Plasticity [20.589970453110208]
Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC)
We propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning.
Experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning.
arXiv Detail & Related papers (2024-06-04T01:35:35Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Adaptive Reorganization of Neural Pathways for Continual Learning with Spiking Neural Networks [9.889775504641925]
We propose a brain-inspired continual learning algorithm with adaptive reorganization of neural pathways.
The proposed model demonstrates consistent superiority in performance, energy consumption, and memory capacity on diverse continual learning tasks.
arXiv Detail & Related papers (2023-09-18T07:56:40Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure.
In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli.
arXiv Detail & Related papers (2019-06-03T21:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.