論文の概要: MEDL-U: Uncertainty-aware 3D Automatic Annotator based on Evidential
Deep Learning
- arxiv url: http://arxiv.org/abs/2309.09599v1
- Date: Mon, 18 Sep 2023 09:14:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 14:22:46.747069
- Title: MEDL-U: Uncertainty-aware 3D Automatic Annotator based on Evidential
Deep Learning
- Title(参考訳): MEDL-U: 証拠深層学習に基づく不確かさを意識した3次元自動アノテーション
- Authors: Helbert Paat, Qing Lian, Weilong Yao, Tong Zhang
- Abstract要約: 本研究では3次元物体検出のためのEvidential Deep Learning(EDL)に基づく不確実性推定フレームワークを提案する。
EDL-Uは擬似ラベルを生成し、関連する不確実性を定量化する。
MEDL-Uを用いて訓練された確率検出器は、KITTI valの以前の3Dアノテータからの出力を用いて訓練された決定論的検出器を超越した。
- 参考スコア(独自算出の注目度): 13.59039985176011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in deep learning-based 3D object detection necessitate the
availability of large-scale datasets. However, this requirement introduces the
challenge of manual annotation, which is often both burdensome and
time-consuming. To tackle this issue, the literature has seen the emergence of
several weakly supervised frameworks for 3D object detection which can
automatically generate pseudo labels for unlabeled data. Nevertheless, these
generated pseudo labels contain noise and are not as accurate as those labeled
by humans. In this paper, we present the first approach that addresses the
inherent ambiguities present in pseudo labels by introducing an Evidential Deep
Learning (EDL) based uncertainty estimation framework. Specifically, we propose
MEDL-U, an EDL framework based on MTrans, which not only generates pseudo
labels but also quantifies the associated uncertainties. However, applying EDL
to 3D object detection presents three primary challenges: (1) relatively lower
pseudolabel quality in comparison to other autolabelers; (2) excessively high
evidential uncertainty estimates; and (3) lack of clear interpretability and
effective utilization of uncertainties for downstream tasks. We tackle these
issues through the introduction of an uncertainty-aware IoU-based loss, an
evidence-aware multi-task loss function, and the implementation of a
post-processing stage for uncertainty refinement. Our experimental results
demonstrate that probabilistic detectors trained using the outputs of MEDL-U
surpass deterministic detectors trained using outputs from previous 3D
annotators on the KITTI val set for all difficulty levels. Moreover, MEDL-U
achieves state-of-the-art results on the KITTI official test set compared to
existing 3D automatic annotators.
- Abstract(参考訳): ディープラーニングベースの3Dオブジェクト検出の進歩は、大規模なデータセットの可用性を必要とする。
しかし、この要件は手動アノテーションの課題を提起している。
この問題に対処するため、文献では、ラベルなしデータの擬似ラベルを自動的に生成できる3次元オブジェクト検出のための弱教師付きフレームワークがいくつか出現している。
それにもかかわらず、これらの生成された擬似ラベルはノイズを含み、人間のラベルほど正確ではない。
本稿では,Evidential Deep Learning(EDL)に基づく不確実性推定フレームワークを導入することにより,擬似ラベルに存在する固有曖昧性に対処する最初のアプローチを提案する。
具体的には,MTransに基づくEDLフレームワークであるMEDL-Uを提案する。
しかし,EDLを3次元物体検出に適用することは,(1)他のオートラボラに比べて比較的低い擬似ラベル品質,(2)過度に明らかな不確実性評価,(3)下流タスクにおける明確な解釈可能性の欠如,有効利用の3つの課題を生じさせる。
我々は,不確実性を考慮したiouベースの損失,エビデンス対応マルチタスク損失関数の導入,不確実性改善のための後処理ステージの実装を通じて,これらの課題に取り組む。
実験の結果,MEDL-Uの出力を用いてトレーニングした確率的検出器は,KITTI val の以前の3次元アノテータの出力を用いて訓練した決定論的検出器を超えていることがわかった。
さらに,MEDL-Uは,既存の3D自動アノテータと比較して,KITTIオフィシャルテストセットの最先端結果を達成している。
関連論文リスト
- DDS3D: Dense Pseudo-Labels with Dynamic Threshold for Semi-Supervised 3D
Object Detection [15.440609044002722]
本報告では, 簡易かつ効果的な半教師付き3次元物体検出器である3Dについて述べる。
これら2つのコンポーネントに適合して、我々の3Dは、最先端の半教師付き3Dオブジェクト検出を、データセットで3.1%、サイクリストで2.1%で上回っている。
論文 参考訳(メタデータ) (2023-03-09T07:30:53Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [95.42181254494287]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
不確実性に基づくアクティブな学習ポリシーは、ポイントクラウドの情報性とボックスレベルのアノテーションコストの間のトレードオフのバランスを取れません。
冗長な3次元境界ボックスラベルの点群を階層的にフィルタリングするtextscCrbを提案する。
実験により,提案手法が既存のアクティブラーニング戦略より優れていることが示された。
論文 参考訳(メタデータ) (2023-01-23T02:43:03Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty
Estimation [59.05097963821385]
本稿では,対象物の潜在的可算有界箱の多様性として,ラベルの不確実性問題を定式化する。
本稿では,条件付き変分オートエンコーダを応用した生成フレームワークであるGLENetを提案する。
GLENetが生成するラベルの不確実性はプラグアンドプレイモジュールであり、既存のディープ3D検出器に便利に統合することができる。
論文 参考訳(メタデータ) (2022-07-06T06:26:17Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
本稿では,ST3D++という名前の自己学習手法を提案する。
擬似ラベル生成プロセスにハイブリット品質を意識した三重項メモリを組み込むことにより、生成された擬似ラベルの品質と安定性を向上させる。
モデルトレーニングの段階では、ソースデータ支援トレーニング戦略とカリキュラムデータ拡張ポリシーを提案する。
論文 参考訳(メタデータ) (2021-08-15T07:49:06Z) - 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object
Detection [76.42897462051067]
3DIoUMatchは屋内および屋外の場面両方に適当3D目的の検出のための新しい半監視された方法です。
教師と教師の相互学習の枠組みを活用し,ラベル付けされていない列車の情報を擬似ラベルの形で伝達する。
本手法は,ScanNetとSUN-RGBDのベンチマークにおける最先端の手法を,全てのラベル比で有意差で継続的に改善する。
論文 参考訳(メタデータ) (2020-12-08T11:06:26Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
不確実性は、認識システムのエラーに対処し、堅牢性を改善するのに役立ちます。
本稿では,SECOND検出器に不確実性レグレッションを追加することにより,目標追尾性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2020-11-04T21:53:31Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。