論文の概要: Efficient Concept Drift Handling for Batch Android Malware Detection
Models
- arxiv url: http://arxiv.org/abs/2309.09807v1
- Date: Mon, 18 Sep 2023 14:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 13:13:20.502311
- Title: Efficient Concept Drift Handling for Batch Android Malware Detection
Models
- Title(参考訳): バッチandroidマルウェア検出モデルのための効率的な概念ドリフト処理
- Authors: Molina-Coronado B., Mori U., Mendiburu A., Miguel-Alonso J
- Abstract要約: 我々は、リトレーニング技術が検知能力を時間とともに維持できることを示す。
実験により, ドリフト検出とサンプル選択機構は, 極めて効率的な再学習戦略をもたらすことが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapidly evolving nature of Android apps poses a significant challenge to
static batch machine learning algorithms employed in malware detection systems,
as they quickly become obsolete. Despite this challenge, the existing
literature pays limited attention to addressing this issue, with many advanced
Android malware detection approaches, such as Drebin, DroidDet and MaMaDroid,
relying on static models. In this work, we show how retraining techniques are
able to maintain detector capabilities over time. Particularly, we analyze the
effect of two aspects in the efficiency and performance of the detectors: 1)
the frequency with which the models are retrained, and 2) the data used for
retraining. In the first experiment, we compare periodic retraining with a more
advanced concept drift detection method that triggers retraining only when
necessary. In the second experiment, we analyze sampling methods to reduce the
amount of data used to retrain models. Specifically, we compare fixed sized
windows of recent data and state-of-the-art active learning methods that select
those apps that help keep the training dataset small but diverse. Our
experiments show that concept drift detection and sample selection mechanisms
result in very efficient retraining strategies which can be successfully used
to maintain the performance of the static Android malware state-of-the-art
detectors in changing environments.
- Abstract(参考訳): Androidアプリの急速に進化する性質は、マルウェア検出システムで使用される静的バッチ機械学習アルゴリズムに重大な課題をもたらしている。
この課題にもかかわらず、既存の文献はこの問題に限定して注意を払っており、drebin、droiddet、mamadroidなど多くの高度なandroidマルウェア検出アプローチは静的モデルに依存している。
本稿では,リトレーニング技術が時間とともに検出能力を維持できることを示す。
特に,検出器の効率と性能における2つの側面の影響を解析する。
1)モデルの再訓練の頻度,及び
2) 再トレーニングに使用するデータ。
最初の実験では、定期的な再トレーニングと、必要時にのみ再トレーニングをトリガーするより高度な概念ドリフト検出法を比較した。
第2の実験では,モデルの再トレーニングに使用するデータ量を削減するためにサンプリング手法を解析した。
具体的には、最近のデータの固定サイズのウィンドウと、トレーニングデータセットを小さくながら多様に保つアプリを選択する最先端のアクティブラーニング手法を比較した。
実験の結果,概念ドリフト検出とサンプル選択機構は,変化環境における静的なandroidマルウェア検出装置の性能維持に有効な,極めて効率的な再訓練戦略をもたらすことがわかった。
関連論文リスト
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Continuous Learning for Android Malware Detection [15.818435778629635]
そこで本研究では,Androidマルウェア分類器を継続的に学習するための新しい階層型コントラスト学習手法と,新しいサンプル選択手法を提案する。
提案手法では, 偽陰性率は14%から9%に減少し, 偽陰性率は0.86%から0.48%に低下する。
論文 参考訳(メタデータ) (2023-02-08T20:54:11Z) - A Data-Centric Approach for Improving Adversarial Training Through the
Lens of Out-of-Distribution Detection [0.4893345190925178]
複雑なアルゴリズムを適用して効果を緩和するのではなく, トレーニング手順から直接ハードサンプルを検出し, 除去することを提案する。
SVHN と CIFAR-10 データセットを用いた結果,計算コストの増大を伴わずに対角訓練の改善に本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-01-25T08:13:50Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
動作認識のための複数のデータセットをうまく一般化することを目的として,ロバストな特徴表現の課題について検討する。
本稿では、情報損失と投影損失という2つの新しい損失項を設計した、新しいマルチデータセットトレーニングパラダイムであるMultiTrainを提案する。
本研究では,Kineetics-400,Kineetics-700,Moments-in-Time,Activitynet,Some-something-v2の5つの課題データセットに対して,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-09-26T01:30:43Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - Improving Botnet Detection with Recurrent Neural Network and Transfer
Learning [5.602292536933117]
ボットネット検出は、ボットネットの拡散を防ぎ、悪意のある活動を防ぐための重要なステップである。
機械学習(ML)を用いた最近のアプローチでは、以前のアプローチよりもパフォーマンスが向上した。
Recurrent Variational Autoencoder (RVAE) を用いた新しいボットネット検出法を提案する。
論文 参考訳(メタデータ) (2021-04-26T14:05:01Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
回帰問題に対する知識蒸留の新しい定式化を提案する。
まず,教師モデル予測を用いて,教師モデルを用いた学習サンプルの退学率を下げる新たな損失関数,教師の退学率の減少を提案する。
マルチタスクネットワークを考えることで、学生モデルの特徴抽出の訓練がより効果的になる。
論文 参考訳(メタデータ) (2020-02-28T08:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。