RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps
- URL: http://arxiv.org/abs/2309.09875v2
- Date: Mon, 04 Nov 2024 13:17:00 GMT
- Title: RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps
- Authors: Abhijeet Nayak, Daniele Cattaneo, Abhinav Valada,
- Abstract summary: We propose RaLF, a novel deep neural network-based approach for localizing radar scans in a LiDAR map of the environment.
RaLF is composed of radar and LiDAR feature encoders, a place recognition head that generates global descriptors, and a metric localization head that predicts the 3-DoF transformation between the radar scan and the map.
We extensively evaluate our approach on multiple real-world driving datasets and show that RaLF achieves state-of-the-art performance for both place recognition and metric localization.
- Score: 8.625083692154414
- License:
- Abstract: Localization is paramount for autonomous robots. While camera and LiDAR-based approaches have been extensively investigated, they are affected by adverse illumination and weather conditions. Therefore, radar sensors have recently gained attention due to their intrinsic robustness to such conditions. In this paper, we propose RaLF, a novel deep neural network-based approach for localizing radar scans in a LiDAR map of the environment, by jointly learning to address both place recognition and metric localization. RaLF is composed of radar and LiDAR feature encoders, a place recognition head that generates global descriptors, and a metric localization head that predicts the 3-DoF transformation between the radar scan and the map. We tackle the place recognition task by learning a shared embedding space between the two modalities via cross-modal metric learning. Additionally, we perform metric localization by predicting pixel-level flow vectors that align the query radar scan with the LiDAR map. We extensively evaluate our approach on multiple real-world driving datasets and show that RaLF achieves state-of-the-art performance for both place recognition and metric localization. Moreover, we demonstrate that our approach can effectively generalize to different cities and sensor setups than the ones used during training. We make the code and trained models publicly available at http://ralf.cs.uni-freiburg.de.
Related papers
- SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
Radar raw data often contains excessive noise, whereas radar point clouds retain only limited information.
We introduce an adaptive subsampling method together with a tailored network architecture that exploits the sparsity patterns.
Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation.
arXiv Detail & Related papers (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Pointing the Way: Refining Radar-Lidar Localization Using Learned ICP Weights [10.613476233222347]
We build on ICP-based radar-lidar localization by including a learned preprocessing step that weights radar points based on high-level scan information.
To train the weight-generating network, we present a novel, stand-alone, open-source differentiable ICP library.
arXiv Detail & Related papers (2023-09-15T19:37:58Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Large-Scale Topological Radar Localization Using Learned Descriptors [15.662820454886202]
We present a simple yet efficient deep network architecture to compute a rotationally invariant discriminative global descriptor from a radar scan image.
The performance and generalization ability of the proposed method is experimentally evaluated on two large scale driving datasets.
arXiv Detail & Related papers (2021-10-06T21:57:23Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: A convolutional, end-to-end trained neural network (NN) for the localization task.
We show that LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps.
arXiv Detail & Related papers (2021-06-23T17:27:04Z) - Improved Radar Localization on Lidar Maps Using Shared Embedding [12.65429845365685]
We present a framework for solving radar global localization and pose tracking on pre-built lidar maps.
Deep neural networks are constructed to create shared embedding space for radar scans and lidar maps.
arXiv Detail & Related papers (2021-06-18T08:40:04Z) - RaLL: End-to-end Radar Localization on Lidar Map Using Differentiable
Measurement Model [14.155337185792279]
We propose an end-to-end deep learning framework for Radar Localization on Lidar Map (RaLL)
RaLL exploits the mature lidar mapping technique, thus reducing the cost of radar mapping.
Our proposed system achieves superior performance over $90km$ driving, even in generalization scenarios where the model training is in UK.
arXiv Detail & Related papers (2020-09-15T13:13:38Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.