Deep Reinforcement Learning for the Joint Control of Traffic Light
Signaling and Vehicle Speed Advice
- URL: http://arxiv.org/abs/2309.09881v1
- Date: Mon, 18 Sep 2023 15:45:22 GMT
- Title: Deep Reinforcement Learning for the Joint Control of Traffic Light
Signaling and Vehicle Speed Advice
- Authors: Johannes V. S. Busch, Robert Voelckner, Peter Sossalla, Christian L.
Vielhaus, Roberto Calandra, Frank H. P. Fitzek
- Abstract summary: We propose a first attempt to jointly learn the control of both traffic light control and vehicle speed advice.
In our experiments, the joint control approach reduces average vehicle trip delays, w.r.t. controlling only traffic lights, in eight out of eleven benchmark scenarios.
- Score: 8.506271224735029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic congestion in dense urban centers presents an economical and
environmental burden. In recent years, the availability of vehicle-to-anything
communication allows for the transmission of detailed vehicle states to the
infrastructure that can be used for intelligent traffic light control. The
other way around, the infrastructure can provide vehicles with advice on
driving behavior, such as appropriate velocities, which can improve the
efficacy of the traffic system. Several research works applied deep
reinforcement learning to either traffic light control or vehicle speed advice.
In this work, we propose a first attempt to jointly learn the control of both.
We show this to improve the efficacy of traffic systems. In our experiments,
the joint control approach reduces average vehicle trip delays, w.r.t.
controlling only traffic lights, in eight out of eleven benchmark scenarios.
Analyzing the qualitative behavior of the vehicle speed advice policy, we
observe that this is achieved by smoothing out the velocity profile of vehicles
nearby a traffic light. Learning joint control of traffic signaling and speed
advice in the real world could help to reduce congestion and mitigate the
economical and environmental repercussions of today's traffic systems.
Related papers
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLight is a novel traffic signal control system that enhances urban traffic management through movement-centric deep reinforcement learning.
By leveraging detailed real-time data and advanced machine learning techniques, MoveLight overcomes the limitations of traditional traffic signal control methods.
arXiv Detail & Related papers (2024-07-24T14:17:16Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Traffic Smoothing Controllers for Autonomous Vehicles Using Deep
Reinforcement Learning and Real-World Trajectory Data [45.13152172664334]
We design traffic-smoothing cruise controllers that can be deployed onto autonomous vehicles.
We leverage real-world trajectory data from the I-24 highway in Tennessee.
We show that at a low 4% autonomous vehicle penetration rate, we achieve significant fuel savings of over 15% on trajectories exhibiting many stop-and-go waves.
arXiv Detail & Related papers (2024-01-18T00:50:41Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Learning to Control and Coordinate Mixed Traffic Through Robot Vehicles at Complex and Unsignalized Intersections [33.0086333735748]
We propose a multi-agent reinforcement learning approach for the control and coordination of mixed traffic by RVs at real-world, complex intersections.
Our method can prevent congestion formation via merely 5% RVs under a real-world traffic demand of 700 vehicles per hour.
Our method is robust against blackout events, sudden RV percentage drops, and V2V communication error.
arXiv Detail & Related papers (2023-01-12T21:09:58Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
We propose a novel approach to optimize traffic flow at intersections in mixed traffic situations using deep reinforcement learning.
Our reinforcement learning agent learns a policy for a centralized controller to let connected autonomous vehicles at unsignalized intersections give up their right of way and yield to other vehicles to optimize traffic flow.
arXiv Detail & Related papers (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - iTV: Inferring Traffic Violation-Prone Locations with Vehicle
Trajectories and Road Environment Data [12.715237421592624]
We propose a framework to infer traffic violation-prone locations in cities based on the largetemporal-scale vehicle trajectory data and environment data.
To evaluate the effectiveness of the proposed method, we conduct extensive studies on large-scale, real-world vehicle trajectories collected from two Chinese cities.
arXiv Detail & Related papers (2020-05-09T08:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.