Learning Nonparametric High-Dimensional Generative Models: The
Empirical-Beta-Copula Autoencoder
- URL: http://arxiv.org/abs/2309.09916v1
- Date: Mon, 18 Sep 2023 16:29:36 GMT
- Title: Learning Nonparametric High-Dimensional Generative Models: The
Empirical-Beta-Copula Autoencoder
- Authors: Maximilian Coblenz, Oliver Grothe, Fabian K\"achele
- Abstract summary: It is necessary to model the autoencoder's latent space with a distribution from which samples can be obtained.
This study aims to discuss, assess, and compare various techniques that can be used to capture the latent space.
- Score: 1.5714999163044752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By sampling from the latent space of an autoencoder and decoding the latent
space samples to the original data space, any autoencoder can simply be turned
into a generative model. For this to work, it is necessary to model the
autoencoder's latent space with a distribution from which samples can be
obtained. Several simple possibilities (kernel density estimates, Gaussian
distribution) and more sophisticated ones (Gaussian mixture models, copula
models, normalization flows) can be thought of and have been tried recently.
This study aims to discuss, assess, and compare various techniques that can be
used to capture the latent space so that an autoencoder can become a generative
model while striving for simplicity. Among them, a new copula-based method, the
Empirical Beta Copula Autoencoder, is considered. Furthermore, we provide
insights into further aspects of these methods, such as targeted sampling or
synthesizing new data with specific features.
Related papers
- Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
We focus on Generative Masked Language Models (GMLMs)
We train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model.
We adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality.
arXiv Detail & Related papers (2024-07-22T18:00:00Z) - Are We Using Autoencoders in a Wrong Way? [3.110260251019273]
Autoencoders are used for dimensionality reduction, anomaly detection and feature extraction.
We revisited the standard training for the undercomplete Autoencoder modifying the shape of the latent space.
We also explored the behaviour of the latent space in the case of reconstruction of a random sample from the whole dataset.
arXiv Detail & Related papers (2023-09-04T11:22:43Z) - Symmetric Equilibrium Learning of VAEs [56.56929742714685]
We view variational autoencoders (VAEs) as decoder-encoder pairs, which map distributions in the data space to distributions in the latent space and vice versa.
We propose a Nash equilibrium learning approach, which is symmetric with respect to the encoder and decoder and allows learning VAEs in situations where both the data and the latent distributions are accessible only by sampling.
arXiv Detail & Related papers (2023-07-19T10:27:34Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes [23.682509357305406]
Autoencoders and their variants are among the most widely used models in representation learning and generative modeling.
We propose a novel Sparse Gaussian Process Bayesian Autoencoder model in which we impose fully sparse Gaussian Process priors on the latent space of a Bayesian Autoencoder.
arXiv Detail & Related papers (2023-02-09T09:57:51Z) - String-based Molecule Generation via Multi-decoder VAE [56.465033997245776]
We investigate the problem of string-based molecular generation via variational autoencoders (VAEs)
We propose a simple, yet effective idea to improve the performance of VAE for the task.
In our experiments, the proposed VAE model particularly performs well for generating a sample from out-of-domain distribution.
arXiv Detail & Related papers (2022-08-23T03:56:30Z) - End-to-end Sinkhorn Autoencoder with Noise Generator [10.008055997630304]
We propose a novel end-to-end sinkhorn autoencoder with noise generator for efficient data collection simulation.
Our method outperforms competing approaches on a challenging dataset of simulation data from Zero Degree Calorimeters of ALICE experiment in LHC.
arXiv Detail & Related papers (2020-06-11T18:04:10Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.