Learning graph geometry and topology using dynamical systems based message-passing
- URL: http://arxiv.org/abs/2309.09924v4
- Date: Sun, 7 Jul 2024 23:08:05 GMT
- Title: Learning graph geometry and topology using dynamical systems based message-passing
- Authors: Dhananjay Bhaskar, Yanlei Zhang, Charles Xu, Xingzhi Sun, Oluwadamilola Fasina, Guy Wolf, Maximilian Nickel, Michael Perlmutter, Smita Krishnaswamy,
- Abstract summary: We introduce DYMAG: a message passing paradigm for GNNs built on the expressive power of graph-dynamics.
DYMAG makes use of complex graph dynamics based on the heat and wave equation as well as a more complex equation which admits chaotic solutions.
We demonstrate that DYMAG achieves superior performance in recovering the generating parameters of Erd"os-Renyi and block random graphs.
- Score: 21.571006438656323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce DYMAG: a message passing paradigm for GNNs built on the expressive power of continuous, multiscale graph-dynamics. Standard discrete-time message passing algorithms implicitly make use of simplistic graph dynamics and aggregation schemes which limit their ability to capture fundamental graph topological properties. By contrast, DYMAG makes use of complex graph dynamics based on the heat and wave equation as well as a more complex equation which admits chaotic solutions. The continuous nature of the dynamics are leveraged to generate multiscale (dynamic-time snapshot) representations which we prove are linked to various graph topological and spectral properties. We demonstrate experimentally that DYMAG achieves superior performance in recovering the generating parameters of Erd\"os-Renyi and stochastic block model random graphs and the persistent homology of synthetic graphs and citation network. Since the behavior of proteins and biomolecules is sensitive to graph topology and exhibits important structure at multiple scales, we find that DYMAG outperforms other methods at predicting salient features of various biomolecules.
Related papers
- State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
Research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors.
Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs.
We develop GraphSSM, a graph state space model for modeling the dynamics of temporal graphs.
arXiv Detail & Related papers (2024-06-03T02:56:11Z) - Learning Coarse-Grained Dynamics on Graph [4.692217705215042]
We consider a Graph Neural Network (GNN) non-Markovian modeling framework to identify coarse-grained dynamical systems on graphs.
Our main idea is to systematically determine the GNN architecture by inspecting how the leading term of the Mori-Zwanzig memory term depends on the coarse-grained interaction coefficients that encode the graph topology.
arXiv Detail & Related papers (2024-05-15T13:25:34Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
This paper focuses on representation learning for dynamic graphs with temporal interactions.
We propose a generic differential model for dynamic graphs that characterises the continuously dynamic evolution of node embedding trajectories.
Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments.
arXiv Detail & Related papers (2023-02-22T12:59:38Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Disentangled Dynamic Graph Deep Generation [10.934180735890727]
This paper proposes a novel framework of factorized deep generative models to achieve interpretable dynamic graph generation.
Various generative models are proposed to characterize conditional independence among node, edge, static, and dynamic factors.
Experiments on multiple datasets demonstrate the effectiveness of the proposed models.
arXiv Detail & Related papers (2020-10-14T17:52:49Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.